Skip to main content

Thermo-Responsive Membranes for Affinity Separation

  • Chapter
Smart Membrane Materials and Systems

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1352 Accesses

Abstract

In this chapter, the design, fabrication and performance of thermo-responsive adsorption/desorption membranes for affinity separation are introduced. Firstly, the design of fabrication of thermo-responsive affinity membranes with nanostructured pores and grafted PNIPAM surface layer for hydrophobic adsorption are described. The membrane shows efficient “adsorbing at a temperature above the LCST-desorbing at a temperature below the LCST” performance for bovine serum albumin molecules. Then a temperature-dependent molecular-recognizable membrane with both grafted PNIPAM chains and immobilized β-CD moieties for affinity separation is introduced. Contrariwise to the first kind of membrane, this membrane demonstrates effective “adsorbing at a temperature below the LCST-desorbing at a temperature above the LCST” performance for guest molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schild H G. Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 1992, 17: 163–249.

    Article  CAS  Google Scholar 

  2. Meng T, Xie R, Chen Y C, Cheng C J, Li P F, Ju X J, Chu L Y. A thermo-responsive affinity membrane with nano-structured pores and grafted poly(N-isopropylacrylamide) surface layer for hydrophobic adsorption. Journal of Membrane Science, 2010, 349: 258–267.

    Article  CAS  Google Scholar 

  3. Xie R, Zhang S B, Wang H D, Yang M, Li P F, Zhu X L, Chu L Y. Temperature-dependent molecular-recognizable membranes based on poly (N-isopropylacrylamide) and β-cyclodextrin. Journal of Membrane Science, 2009, 326: 618–626.

    Article  CAS  Google Scholar 

  4. Roper D K, Lightfoot E N. Separation of biomolecules using adsorptive membranes. Journal of Chromatography A, 1995, 702: 3–26.

    Article  CAS  Google Scholar 

  5. Charcosset D. Purification of proteins by membrane chromatography. Journal of Chemical Technology and Biotechnology, 1998, 71: 95–110.

    Article  CAS  Google Scholar 

  6. Guo W, Ruckenstein E. Separation and purification of horseradish peroxidase by membrane affinity chromatography. Journal of Membrane Science, 2003, 211: 101–111.

    Article  CAS  Google Scholar 

  7. Zeng X, Ruckenstein E. Membrane chromatography: preparation and applications to protein separation. Biotechnology Progress, 1999, 15: 1003–1019.

    Article  CAS  Google Scholar 

  8. Choi Y J, Yamaguchi T, Nakao S. A novel separation system using porous thermosensitive membranes. Industrial & Engineering Chemistry Research, 2000, 39: 2491–2495.

    Article  CAS  Google Scholar 

  9. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Super-hydrophobic surfaces: from natural to artificial. Advanced Materials, 2002, 14: 1857–1860.

    Article  CAS  Google Scholar 

  10. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D. Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chemie International Edition, 2004, 43: 357–360.

    Article  CAS  Google Scholar 

  11. Xia F, Feng L, Wang S, Sun T, Song W, Jiang W, Jiang L. Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Advanced Materials, 2006, 18: 432–436.

    Article  CAS  Google Scholar 

  12. Xia F, Ge H, Hou Y, Sun T, Chen L, Zhang G, Jiang L. Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Advanced Materials, 2007, 19: 2520–2524.

    Article  CAS  Google Scholar 

  13. Song W, Xia F, Bai Y, Liu F, Sun T, Jiang L. Controllable water permeation on a poly(N-isopropylacrylamide)-modified nanostructured copper mesh film. Langmuir, 2007, 23: 327–331.

    Article  Google Scholar 

  14. Vladisavljevica G T, Shimizu M, Nakashima T. Permeability of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its microstructure. Journal of Membrane Science, 2005, 250: 69–77.

    Article  Google Scholar 

  15. Zhang L, Li Y, Sun J, Shen J. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region. Journal of Colloid and Interface Science, 2008, 319: 302–308.

    Article  CAS  Google Scholar 

  16. Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 1968, 26: 62–69.

    Article  Google Scholar 

  17. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces. Nature, 1997, 388: 431–432.

    Article  CAS  Google Scholar 

  18. Ivanov D, Petrova H. Capillary effects. Physics Education, 2000, 35: 262–266.

    Article  Google Scholar 

  19. Shamim N, Hong L, Hidajat K, Uddin M S. Thermosensitive-polymercoated magnetic nanoparticles: Adsorption and desorption of Bovine Serum Albumin. Journal of Colloid and Interface Science, 2006, 304: 1–8.

    Article  CAS  Google Scholar 

  20. Kapur V, Charkoudian J, Anderson J L. Transport of proteins through gel-filled porous membranes. Journal of Membrane Science, 1997, 131: 143–153.

    Article  CAS  Google Scholar 

  21. Peters T J. All about Albumin: Biochemistry, Genetics, and Medical Applications. Academic Press, San Diego, CA, 1996.

    Google Scholar 

  22. Rezwan K, Meier L P, Rezwan M, Voros J, Textor M, Gauckler L J. Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV-Vis measurements. Langmuir, 2004, 20: 10055–10061.

    Article  CAS  Google Scholar 

  23. Alkan M, Demirbas O, Dogan M, Arslan O. Surface properties of bovine serum albumin-adsorbed oxides: adsorption, adsorption kinetics and electrokinetic properties. Microporous and Mesoporous Materials, 2006, 96: 331–340.

    Article  CAS  Google Scholar 

  24. Cheng C J, Chu L Y, Ren P W, Zhang J, Hu L. Preparation of monodisperse thermo-sensitive poly(N-isopropylacrylamide) hollow microcapsules. Journal of Colloid and Interface Science, 2007, 313: 383–388.

    Article  CAS  Google Scholar 

  25. Yanagioka M, Kurita H, Yamaguchi T, Nakao S. Development of a molecular recognition separation membrane using cyclodextrin complexation controlled by thermosensitive polymer chains. Industrial & Engineering Chemistry Research, 2003, 42: 380–385.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chu, LY. (2011). Thermo-Responsive Membranes for Affinity Separation. In: Smart Membrane Materials and Systems. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18114-6_6

Download citation

Publish with us

Policies and ethics