Skip to main content

Smart Microcapsules with Thermo-Responsive Hydrogel Membranes

  • Chapter
  • 1416 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Besides smart microcapsules with porous substrates and stimuli-responsive gates as described in Chapter 3, smart microcapsules can also be designed with the whole membranes consisting of stimuli-responsive smart hydrogels. In this chapter, the design, fabrication and performance of monodisperse smart microcapsules with thermo-responsive hydrogel membranes are introduced. For different application purposes, smart microcapsules with thermo-responsive PNIPAM hydrogel membranes are designed and fabricated with either water-in-oil (W/O) single emulsions, oil-in-water-in-oil (O/W/O) double emulsions, or water-in-oil-in-water-in-oil (W/O/W/O) triple emulsions as synthesis templates. The thermo-responsive PNIPAM hollow microcapsules, prepared with W/O single emulsions as templates, show reversible thermo-responsive swelling/shrinking volume phase transition behavior as the temperature changes across the lower critical solution temperature (LCST). The thermo-responsive PNIPAM hollow microcapsules, prepared with O/W/O double emulsions and W/O/W/O triple emulsions as templates, demonstrate thermo-induced burst squirting property for controlled release.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng C J, Chu L Y, Ren P W, Zhang J, Hu L. Preparation of monodisperse thermo-sensitive poly(N-isopropylacrylamide) hollow microcapsules. Journal of Colloid and Interface Science, 2007, 313: 383–388.

    Article  CAS  Google Scholar 

  2. Cheng C J, Chu L Y, Xie R. Preparation of highly monodisperse W/O emulsions with hydrophobically modified SPG membranes. Journal of Colloid and Interface Science, 2006, 300: 375–382.

    Article  CAS  Google Scholar 

  3. Chu L Y, Xie R, Zhu J H, Chen W M, Yamaguchi T, Nakao S. Study on SPG membrane emulsification processes for the preparation of monodispersed core-shell microcapsules. Journal of Colloid and Interface Science, 2003, 265: 187–196.

    Article  CAS  Google Scholar 

  4. Liu L Y, Yang W T. Photoinitiated, inverse emulsion polymerization of acrylamide: Some mechanistic and kinetic aspects. Journal of Polymer Science Part A-Polymer Chemistry, 2004, 42: 846–852.

    Article  CAS  Google Scholar 

  5. Ikkai F, Iwamoto S, Adachi E, Nakajima M. New method of producing mono-sized polymer gel particles using microchannel emulsification and UV irradiation. Colloid & Polymer Science, 2005, 283: 1149–1153.

    Article  CAS  Google Scholar 

  6. Jung M, Hubert D H W, Bomans P H H, Frederik P M, Meuldijk J, van Herk A M, Fischer H, German A L. New vesicle-polymer hybrids: the parachute architecture. Langmuir, 1997, 13: 6877–6880.

    Article  CAS  Google Scholar 

  7. Ikkai F, Adachi E. Novel method of producing polymer gels in aqueous solution using UV irradiation. Macromolecular Rapid Communications, 2004, 25: 1514–1517.

    Article  CAS  Google Scholar 

  8. Yang W C, Xie R, Pang X Q, Ju X J, Chu L Y. Preparation and characterization of dual stimuli-responsive microcapsules with a superparamagnetic porous membrane and thermo-responsive gates. Journal of Membrane Science, 2008, 321: 324–330.

    Article  CAS  Google Scholar 

  9. Kim G C, Li Y Y, Chu Y F, Cheng S X, Zhuo R X, Zhang X Z. Nanosized temperature-responsive Fe3O4-UA-g-P(UA-co-NIPAAm) magnetomicelles for controlled drug release. European Polymer Journal, 2008, 44: 2761–2767.

    Article  CAS  Google Scholar 

  10. Soppimath K S, Liu L H, Seow W Y, Liu S Q, Powell R, Chan P, Yang Y Y. Multi-functional polymer core-shell nanoparticles self-assembled from pH-induced thermally responsive polymer for targeted anticancer drug delivery. Advanced Functional Materials, 2007, 17: 355–362.

    Article  CAS  Google Scholar 

  11. Zhang L Y, Guo R, Yang M, Jiang X Q, Liu B R. Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Advanced Materials, 2007, 19: 2988–2992.

    Article  CAS  Google Scholar 

  12. Shchukin D G, Gorin D A, Mohwald H. Ultrasonically induced opening of polyelectrolyte microcontainers. Langmuir, 2006, 22: 7400–7404.

    Article  CAS  Google Scholar 

  13. Satarkar N S, Hilt J Z. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. Journal of Controlled Release, 2008, 130: 246–251.

    Article  CAS  Google Scholar 

  14. Hu S H, Tsai C H, Liao C F, Liu D M, Chen S Y. Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery. Langmuir, 2008, 24: 11811–11818.

    Article  CAS  Google Scholar 

  15. Wang W, Liu L, Ju X J, Zerrouki D, Xie R, Yang L, Chu L Y. A novel thermo-induced self-bursting microcapsule with magnetic-targeting property. ChemPhysChem, 2009, 10: 2405–2409.

    Article  CAS  Google Scholar 

  16. Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308: 537–541.

    Article  CAS  Google Scholar 

  17. Gu S C, Shiratori T, Konno M. Synthesis of monodisperse, magnetic latex particles with polystyrene core. Colloid & Polymer Science, 2003, 281: 1076–1081.

    Article  CAS  Google Scholar 

  18. Sacanna S, Philipse A P. Preparation and properties of monodisperse latex spheres with controlled magnetic moment for field-induced colloidal crystallization and (dipolar) chain formation. Langmuir, 2006, 22: 10209–10216.

    Article  CAS  Google Scholar 

  19. Allen T M, Cullis P R. Drug delivery systems: entering the mainstream. Science, 2004, 303: 1818–1822.

    Article  CAS  Google Scholar 

  20. Giljohann D A, Seferos D S, Prigodich A E, Patel P C, Mirkin C A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. Journal of American Chemistry Society, 2009, 131: 2072–2073.

    Article  CAS  Google Scholar 

  21. Blummel J, Perschmann N, Aydin D, Drinjakovic J, Surrey T, Lopez-Garcia M, Kessler H, Spatz J P. Protein repellent properties of covalently attached PEG coatings on nanostructured SiO2-based interfaces. Biomaterials, 2007, 28: 4739–4747.

    Article  Google Scholar 

  22. Mortera R, Vivero-Escoto J, Slowing I I, Garrone E, Onida B, Lin V S Y. Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system. Chemical Communications, 2009, 22: 3219–3221.

    Article  Google Scholar 

  23. Vasir J K, Labhasetwar V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials, 2008, 29: 4244–4252.

    Article  CAS  Google Scholar 

  24. Discher B M, Won Y Y, Ege D S, Lee J C M, Bates F S, Discher D E, Hammer D A. Polymersomes: tough vesicles made from diblock copolymers. Science, 1999, 284: 1143–1146.

    Article  CAS  Google Scholar 

  25. Hu S H, Liu D M, Tung W L, Liao C F, Chen S Y. Surfactant-free, self-assembled pva-iron oxide/silica core-shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency. Advanced Functional Materials, 2008, 18: 2946–2955.

    Article  CAS  Google Scholar 

  26. Volodkin D V, Skirtach A G, Mohwald H. Near-IR remote release from assemblies of liposomes and nanoparticles. Angewandte Chemie International Edition, 2009, 48: 1807–1809.

    Article  CAS  Google Scholar 

  27. Pardridge W M. shRNA and siRNA delivery to the brain. Advanced Drug Delivery Reviews, 2007, 59: 141–152.

    Article  CAS  Google Scholar 

  28. Liu L, Wang W, Ju X J, Xie R, Chu L Y. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter, 2010, 6: 3759–3763.

    Article  CAS  Google Scholar 

  29. Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 2007, 46: 8970–8974.

    Article  CAS  Google Scholar 

  30. Xie R, Li Y, Chu L Y. Preparation of thermo-responsive gating membranes with controllable response temperature. Journal of Membrane Science, 2007, 289: 76–85.

    Article  CAS  Google Scholar 

  31. Lamaka S V, Shchukin D G, Andreeva D V, Zheludkevich M L, Mohwald H, Ferreira M G S. Sol-gel/polyelectrolyte active corrosion protection system. Advanced Functional Materials, 2008, 18: 3137–3147.

    Article  CAS  Google Scholar 

  32. White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Autonomic healing of polymer composites. Nature, 2001, 409: 794–797.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chu, LY. (2011). Smart Microcapsules with Thermo-Responsive Hydrogel Membranes. In: Smart Membrane Materials and Systems. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18114-6_4

Download citation

Publish with us

Policies and ethics