Skip to main content

Fractional Calculus

  • Chapter

Part of the Nonlinear Physical Science book series (NPS)

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Alaoui M. A., 1993, Novel digital integrator and differentiator, Electron. Lett., 29, 376–378.

    Article  Google Scholar 

  • Al-Alaoui M. A., 1997, Filling the gap between the bilinear and the backward difference transforms: An interactive design approach, Int. J. Elect. Eng. Edu., 34, 331–337.

    Article  Google Scholar 

  • Barbosa R. S., Machado J. A. T. and Silva M. F., 2006, Time domain design of fractional differintegrators using least-squares, Signal Processing, 86, 2567–2581.

    Article  MATH  Google Scholar 

  • Bode H. W., 1949, Network Analysis and Feedback Amplifier Design, Tung Hwa Book Company, Shanghai.

    Google Scholar 

  • Bohannan G., 2002, Analog realization of a fractional control element — Revised, Proc. of the 41st IEEE Int. Conf. on Decision and Control, December 9, Las Vegas, USA.

    Google Scholar 

  • Biswas K., Sen S. and Dutta P. K., 2006, Realization of a constant phase element and its performance study in a differentiator circuit, IEEE Transactions on Circuits and Systems II: Express Briefs, 53, 802–806.

    Article  Google Scholar 

  • Caputo M., 1967, Linear models of dissipation whose Q is almost frequency independent, Geophys. J. R. Astr. Soc., 13, 529–539. (Reprinted recently in: Fract. Calc. Appl. Anal., 11, 3–14, 2008.)

    Article  Google Scholar 

  • Carlson G. E. and Halijak C. A., 1964, Approximation of fractional capacitors (1=s)1=n by a regular Newton process, IEEE Trans. on Circuit Theory, 11, 210–213.

    Article  Google Scholar 

  • Coopmans C., Petráš I. and Chen Y. Q., 2009, Analogue fractional-order generalized memristive devices, Proc. of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, DETC2009/MSNDC-86861, August 30 — September 2, San Diego, USA.

    Google Scholar 

  • Charef A., Sun H. H., Tsao Y. Y. and Onaral B., 1992, Fractal system as represented by singularity function, IEEE Transactions on Automatic Control, 37, 1465–1470.

    Article  MathSciNet  MATH  Google Scholar 

  • Charef A., 2006, Modeling and analog realization of the fundamental linear fractional order differential equation, Nonlinear Dynamics, 46, 195–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y. Q., 2003, Oustaloup-Recursive-Approximation for Fractional Order Differentiators. MathWorks, Inc., FileExchage, http://www.mathworks.com/matlabcentral / fileexchange / 3802-outstaloup-recursive-appriximation-for-fractional-order-differentiators

    Google Scholar 

  • Chen Y. Q., Ahn H. S. and Xue D., 2006, Robust controllability of interval fractional order linear time invariant systems, Signal Processing, 86, 2794–2802.

    Article  MATH  Google Scholar 

  • Chua L. O., 1971, Memristor — the missing circuit element, IEEE Transaction on Circuit Theory, CT-18, 507–519.

    Article  Google Scholar 

  • Chua L. O. and Kang S. M., 1976, Memristive devices and systems, Proceedings of the IEEE, 64, 209–223.

    Article  MathSciNet  Google Scholar 

  • Deng W., 2007a, Short memory principle and a predictor-corrector approach for fractional differentional equations, Journal of Computational and Applied Mathematics, 206, 174–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Deng W., 2007b, Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics, 227, 1510–1522.

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm K., Ford N. J., Freed A. D. and Luchko Yu., 2005, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg., 194, 743–773.

    Article  MathSciNet  MATH  Google Scholar 

  • Djrbashian M. M., 1993, Harmonic Analysis and Boundary Value problems in the Complex Domain, Birkhäuser, Basel.

    Book  MATH  Google Scholar 

  • Dorčák Ľ., 1994, Numerical Models for the Simulation of the Fractional-Order Control Systems, UEF-04-94, The Academy of Sciences, Inst. of Experimental Physic, Košice, Slovakia.

    Google Scholar 

  • Dutta Roy S. C., 1967, On the realization of a constant-argument immitance of fractional operator, IEEE Trans. on Circuit Theory, 14, 264–374.

    Article  Google Scholar 

  • Ford N. and Simpson A., 2001, The numerical solution of fractional differential equations: speed versus accuracy, Num. Anal. Report 385, Manchester Centre for Computational Mathematics.

    Google Scholar 

  • Gorenflo R., Kilbas A. A. and Rogosin S. V., 1998, On the generalized mittag-leffler type functions, Integral Transform. Spec. Funct., 7, 215–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Heymans N. and Podlubny I., 2006, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta, 45, 765–772.

    Article  Google Scholar 

  • Hwang C., Leu J. F. and Tsay S. Y., 2002, A note on time-domain simulation of feedback fractional-order systems, IEEE Transactions on Automatic Control, 47, 625–631.

    Article  MathSciNet  MATH  Google Scholar 

  • Ichise M., Nagayanagi Y. and Kojima T., 1971, An analog simulation of non-integer order transfer functions for analysis of electrode processes, J. Electroanal. Chem., 33, 253–265.

    Article  Google Scholar 

  • Itoh M. and Chua L. O., 2009, Memristor cellular automata and memristor discretetime cellular neural networks, International Journal of Bifurcation and Chaos, 19, 3605–3656.

    Article  MATH  Google Scholar 

  • Jones H. E. and Shenoi B. A., 1970, Maximally flat lumped-element approximation to fractional operator immitance function, IEEE Trans. on Circuit and Systems, 17, 125–128.

    Google Scholar 

  • Kotek Z., Kubik S. and Razim M., 1973, Nonlinear Dynamical Systems, TKI-SNTL, Praha (in Czech).

    Google Scholar 

  • Krishna B. T. and Reddy K. V. V. S., 2008, Active and Passive Realization of Fractance Device of Order 1/2, Active and Passive Electronic Components, Hindawi Publishing Corporation, Article ID 369421, DOI: 10.1155/2008/369421.

    Google Scholar 

  • Lubich C., 1986, Discretized fractional calculus, SIAM J. Math. Anal., 17, 704–719.

    Article  MathSciNet  MATH  Google Scholar 

  • Maione G., 2008, Continued fractions approximation of the impulse response of fractional-order dynamic systems, IET Control Theory Appl., 2, 564–572.

    Article  MathSciNet  Google Scholar 

  • Miller K. S. and Ross B., 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons. Inc., New York.

    MATH  Google Scholar 

  • Mittag-Leffler M. G., 1903, Sur la nouvelle fonction E ± (x), Comptes Rendus, Acad. Sci. Paris, 137, 554–558.

    MATH  Google Scholar 

  • Mouttet B., 2009, An Introduction to Memimpedance and Memadmittance Systems Analysis, http://knol.google.com/k/blaise-mouttet/.

    Google Scholar 

  • Nakagava M. and Sorimachi K., 1992, Basic characteristics of a fractance device, IEICE Trans. Fundamentals, E75-A, 1814–1818.

    Google Scholar 

  • Oldham K. B. and Spanier J., 1974, The Fractional Calculus, Academic Press, New York.

    MATH  Google Scholar 

  • Oldham K. B. and Zoski C. G., 1983, Analogue instrumentation for processing polarographic data, J. Electroanal. Chem., 157, 27–51.

    Google Scholar 

  • Oustaloup A., 1995, La Derivation Non Entiere: Theorie, Synthese et Applications, Hermes, Paris.

    MATH  Google Scholar 

  • Oustaloup A., Levron F., Mathieu B. and Nanot F. M., 2000, Frequency-band complex noninteger differentiator: characterization and synthesis, IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications I, 47, 25–39.

    Article  Google Scholar 

  • Petráš I., Podlubny I., O’Leary P., Dorčák Ľ. and Vinagre B. M., 2002, Analogue Realization of Fractional Order Controllers, Faculty of BERG, Technical University of Kosice.

    Google Scholar 

  • Petráš I., 2003a, Digital Fractional Order Differentiator/integrator — IIR type. Math-Works, Inc., http://www.mathworks.com/matlabcentral/fileexchange/3672.

    Google Scholar 

  • Petráš I., 2003b, Digital Fractional Order Differentiator/integrator — FIR type. Math-Works, Inc., http://www.mathworks.com/matlabcentral/fileexchange/3673.

    Google Scholar 

  • Petráš I., 2006, Method for simulation of the fractional order chaotic systems, Acta Montanistica Slovaca, 11, 273–277.

    Google Scholar 

  • Petráš I., 2009, Chaos in the fractional-order Volta’s system: modeling and simulation, Nonlinear Dynamics, 57, 157–170.

    Article  MATH  Google Scholar 

  • Petráš I., Chen Y. Q. and Coopmans C., 2009, Fractional-order memristive systems, Proc. of the 14th International Conference on Emerging Technologies and Factory Automation — ETFA 2009, September 22–26, Mallorca.

    Google Scholar 

  • Podlubny I., 1999, Fractional Differential Equations, Academic Press, San Diego.

    MATH  Google Scholar 

  • Podlubny I., 2000, Matrix approach to discrete fractional calculus, Fractional Calculus and Applied Analysis, 3, 359–386.

    MathSciNet  MATH  Google Scholar 

  • Podlubny I., 2002, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5, 367–386.

    MathSciNet  MATH  Google Scholar 

  • Podlubny I., Petráš, I., Vinagre, B. M., O’Leary P., Dorčák Ľ., 2002, Analogue Realizations of Fractional-Order Controllers, Nonlinear Dynamics, 29, 281–296.

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I. and Kacenak M., 2005, Mittag-Leffler function. MathWorks, Inc., http://www.mathworks.com/matlabcentral/fileexchange/8738.

    Google Scholar 

  • Podlubny I., Chechkin A., škovránek T., Chen Y. Q. and Vinagre B. M. J., 2009, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, Journal of Computational Physics, 228, 3137–3153.

    Article  MathSciNet  MATH  Google Scholar 

  • Schafer I. and Kruger K., 2008, Modelling of lossy coils using fractional derivatives, J. Phys. D: Appl. Phys., 41, 1–8.

    Google Scholar 

  • Snider G. S., 2008, Spike-timing-dependent learning in memristive nanodevices, Proc. of the IEEE International Symposium on Nanoscale Architectures, NANOARCH 2008, June 12–13, 85–92.

    Google Scholar 

  • Strukov D. B., Snider G. S., Stewart D. R. and Williams R. S., 2008, The missing memristor found, Nature, 453, 80–83.

    Article  Google Scholar 

  • Susse R., Domhardt A. and Reinhard M., 2005, Calculation of electrical circuits with fractional characteristics of construction elements, Forsch Ingenieurwes, 69, 230–235.

    Article  Google Scholar 

  • Takyar M. S. and Georgiu T. T., 2007, The fractional integrator as a control design element, Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, USA, Dec. 12–14, 239–244.

    Google Scholar 

  • Tavazoei M. S. and Haeri M., 2007a, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Proc., 1, 171–181.

    Article  Google Scholar 

  • Tavazoei M. S. and Haeri, M., 2007b, A necessary condition for double scroll attractor existence in fractional — order systems, Physics Letters A, 367, 102–113.

    Article  MATH  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2008, Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear Analysis, 69, 1299–1320.

    Article  MathSciNet  MATH  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2010, Rational approximations in the simulation and implementation of fractional-order dynamics: A descriptor system approach, Automatica, 46, 94–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Thang H. M., 2003, Memristor model, MathWorks, Inc., FileExchage, http://www.mathworks.com/matlabcentral/fileexchange/25082.

    Google Scholar 

  • Tour J. M. and He T., 2008, The fourth element, Nature, 453, 42–43.

    Article  Google Scholar 

  • Tseng C. C. and Lee S. L., 2008, Digital IIR integrator design using recursive Romběrg iňtegration rule and fractional sample delay, Signal Processing, 88, 2222–2233

    Article  MATH  Google Scholar 

  • Valerio D., 2005, Toolbox ninteger for Matlab, v. 2.3 (September, 2005), http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm.

    Google Scholar 

  • Ventra M. D., Pershin Y. V. and Chua L. O., 2009, Circuit elements with memory: memristors, memcapacitors and meminductors, e-print arxive: http://arxiv.org/abs/0901.3682.

    Google Scholar 

  • Vinagre B. M., Podlubny I., Hernández A. and Feliu V., 2000, Some approximations of fractional order operators used in control theory and applications, Fractional Calculus and Applied Analysis, 3, 231–248.

    MathSciNet  MATH  Google Scholar 

  • Vinagre B. M., Chen Y. Q. and Petráš I., 2003, Two direct Tustin discretization methods for fractional-order differentiator/integrator, J. Franklin Inst., 340, 349–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J. C., 1987, Realizations of generalized Warburg impedance with RC ladder networks and transmission lines, Journal of The Electrochemical Society, 134, 1915–1920.

    Article  Google Scholar 

  • Westerlund S. and Ekstam L., 1994, Capacitor theory, IEEE Trans. on Dielectrics and Electrical Insulation, 1, 826–839.

    Article  Google Scholar 

  • Westerlund S., 2002, Dead Matter Has Memory! Causal Consulting, Kalmar, Sweden.

    Google Scholar 

  • Wikipedia, 2009, “Memristor”, Wikimedia Foundation, Inc. (free encyclopedia), http://en.wikipedia.org/wiki/Memristor.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petráš, I. (2011). Fractional Calculus. In: Fractional-Order Nonlinear Systems. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18101-6_2

Download citation

Publish with us

Policies and ethics