Incremental DFA Minimisation

  • Marco Almeida
  • Nelma Moreira
  • Rogério Reis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6482)


We present a new incremental algorithm for minimising deterministic finite automata. It runs in quadratic time for any practical application and may be halted at any point, returning a partially minimised automaton. Hence, the algorithm may be applied to a given automaton at the same time as it is processing a string for acceptance. We also include some experimental comparative results.


Recursive Call Main Loop Minimisation Process Variable Path Incremental Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAA+09]
    Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and GUItar: tools for automata manipulation and visualization. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 65–74. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. [AMR07]
    Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string automata representation. Theoret. Comput. Sci. 387(2), 93–102 (2007); Special issue Selected papers of DCFS 2006MathSciNetCrossRefMATHGoogle Scholar
  3. [Brz63]
    Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. In: Fox, J. (ed.) Proc. of the Sym. on Math. Theory of Automata, NY. MRI Symposia Series, vol. 12, pp. 529–561 (1963)Google Scholar
  4. [CLRS03]
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT, Cambridge (2003)MATHGoogle Scholar
  5. [FAd10]
    Project FAdo. FAdo: tools for formal languages manipulation, (access date:1.1.2010)
  6. [HMU00]
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison Wesley, Reading (2000)MATHGoogle Scholar
  7. [Hop71]
    Hopcroft, J.: An nlogn algorithm for minimizing states in a finite automaton. In: Proc. Inter. Symp. on the Theory of Machines and Computations, Haifa, Israel, pp. 189–196. Academic Press, London (1971)CrossRefGoogle Scholar
  8. [Huf55]
    Huffman, D.A.: The synthesis of sequential switching circuits. The Journal of Symbolic Logic 20(1), 69–70 (1955)MathSciNetGoogle Scholar
  9. [Moo58]
    Moore, E.F.: Gedanken-experiments on sequential machines. The Journal of Symbolic Logic 23(1), 60 (1958)Google Scholar
  10. [Tar75]
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. JACM 22(2), 215–225 (1975)MathSciNetCrossRefMATHGoogle Scholar
  11. [Wat95]
    Watson, B.W.: Taxonomies and toolkit of regular languages algortihms. PhD thesis, Eindhoven Univ. of Tec. (1995)Google Scholar
  12. [Wat01]
    Watson, B.W.: An incremental DFA minimization algorithm. In: International Workshop on Finite-State Methods in Natural Language Processing, Helsinki, Finland (August 2001)Google Scholar
  13. [WD03]
    Watson, B.W., Daciuk, J.: An efficient DFA minimization algorithm. Natural Language Engineering, 49–64 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marco Almeida
    • 1
  • Nelma Moreira
    • 1
  • Rogério Reis
    • 1
  1. 1.DCC-FC & LIACCUniversidade do PortoPortoPortugal

Personalised recommendations