Advertisement

Quantum Mechanics with Trajectories

  • Ángel S. Sanz
  • Salvador Miret-Artés
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 850)

Abstract

Bohmian mechanics allows to understand the quantum world in a classical-like fashion, by means of trajectories evolving throughout configuration space. This appealing feature has stimulated its application nowadays to many different problems from atomic and molecular physics, condensed matter physics, chemical physics or quantum chemistry, for example. This is a remarkable growth if one takes into account that this causal theory of quantum motion started as a simple hidden-variable model to disproof von Neumann’s theorem on the impossibility of hidden variables in quantum mechanics, and its applications initially covered fundamental problems. In this Chapter, the main elements of this theory are briefly revisited and they will be further developed in Volume 2. Furthermore, a contextualization of Bohmian trajectories with respect to alternative trajectory-based approaches to quantum mechanics, such as Feynman’s path integral, the semiclassical approximation, mixed/hybrid (quantum-classical) formulations or quantum (causal) stochastic trajectories, is also presented.

Keywords

Wave Function Jacobi Equation Quantum Potential Bohmian Mechanic Standard Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ballentine, L.E.: Ballentine: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)Google Scholar
  2. 2.
    Zurek, W.H., Wheeler, J.A.: Quantum Theory of Measurement. Princeton University Press, Princeton, NJ (1983)Google Scholar
  3. 3.
    Belinfante, F.J.: A Survey of Hidden-Variables Theories. Pergamon, New York (1973)Google Scholar
  4. 4.
    Tarozzi, G., van der Merwe, A. (eds.): Open Questions in Quantum Physics. Reidel, Dordrecht (1985)Google Scholar
  5. 5.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)Google Scholar
  6. 6.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952)Google Scholar
  7. 7.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180–193 (1952)Google Scholar
  8. 8.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  9. 9.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    Aspect, A., Grangier, P. Roger G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)Google Scholar
  12. 12.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  14. 14.
    Goldstein, S.: Quantum theory without observers—Part I. Phys. Today 51(3), 42–46 (1998)CrossRefGoogle Scholar
  15. 15.
    Goldstein, S.: Quantum theory without observers—Part II. Phys. Today 51(4), 38–42 (1998)CrossRefGoogle Scholar
  16. 16.
    Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, New York (2005)zbMATHGoogle Scholar
  17. 17.
    Chattaraj, P.K. (ed.): Quantum Trajectories. CRC Press, Taylor and Francis, NY (2010)Google Scholar
  18. 18.
    Oriols, X., Mompart, J. (eds.): Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology. Pan Standford Publishing, Singapore (2011)Google Scholar
  19. 19.
    Weiner, J.H., Askar, A.: Particle method for the numerical solution of the time-dependent Schrödinger equation. J. Chem. Phys. 54, 3534–3541 (1971)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Dey, B.K., Askar, A., Rabitz, H.: Multidimensional wave packet dynamics with the fluid dynamical formulation of the Schrödinger equation. J. Chem. Phys. 109, 8770–8782 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Sales Mayor, F., Askar, A., Rabitz, H.A.: Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems. J. Chem. Phys. 111, 2423–2435 (1999)Google Scholar
  22. 22.
    Wyatt, R.E.: Quantum wave packet dynamics with trajectories: application to reactive scattering. J. Chem. Phys. 111, 4406–4413 (1999)Google Scholar
  23. 23.
    Wyatt, R.E.: Quantum wavepacket dynamics with trajectories: wavefunction synthesis along quantum paths. Chem. Phys. Lett. 313, 189–197 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Lopreore, C., Wyatt, R.E.: Quantum wave packet dynamics with trajectories. Phys. Rev. Lett. 82, 5190–5193 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Wyatt, R.E., Bittner, E.R.: Quantum wave packet dynamics with trajectories: implementation with adaptive Lagrangian grids. J. Chem. Phys. 113, 8898–8907 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Hughes, K.H., Wyatt, R.E.: Wavepacket dynamics on dynamically adapting grids: application of the equidistribution principle. Chem. Phys. Lett. 366, 336–342 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Hughes, K.H., Wyatt, R.E.: Wavepacket dynamics on arbitrary Lagrangian–Eulerian grids: application to an Eckart barrier. Phys. Chem. Chem. Phys. 5, 3905–3910 (2003)CrossRefGoogle Scholar
  28. 28.
    Trahan, C.J., Wyatt, R.E.: An arbitrary Lagrangian–Eulerian approach to solving the quantum hydrodynamic equations of motion: equidistribution with “smart” springs. J. Chem. Phys. 118, 4784–4790 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Kendrick, B.K.: A new method for solving the quantum hydrodynamic equations of motion. J. Chem. Phys. 119, 5805–5817 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Kendrick, B.K.: Quantum hydrodynamics: Application to N-dimensional reactive scattering. J. Chem. Phys. 121, 2471–2482 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Zhao, Y., Makri, N.: Bohmian versus semiclassical description of interference phenomena. J. Chem. Phys. 119, 60–67 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Makri, N.: Forward–backward quantum dynamics for time correlation functions. J. Phys. Chem. A 108, 806–812 (2004)CrossRefGoogle Scholar
  33. 33.
    Liu, J., Makri, N.: Monte Carlo Bohmian dynamics from trajectory stability properties. J. Phys. Chem. A 108, 5408–5416 (2004)CrossRefGoogle Scholar
  34. 34.
    Bittner, E.R.: Quantum initial value representations using approximate Bohmian trajectories. J. Chem. Phys. 119, 1358–1364 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Garashchuk, S., Rassolov, V.A.: Semiclassical dynamics with quantum trajectories: formulation and comparison with the semiclassical initial value representation propagator. J. Chem. Phys. 118, 2482–2490 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Poirier, B.: Reconciling semiclassical and Bohmian mechanics. I. Stationary states. J. Chem. Phys. 121, 4501–4515 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Trahan, C., Poirier, B.: Reconciling semiclassical and Bohmian mechanics. II. Scattering states for discontinuous potentials. J. Chem. Phys. 124, 034115(1–18) (2006)Google Scholar
  38. 38.
    Trahan, C., Poirier, B.: Reconciling semiclassical and Bohmian mechanics. III. Scattering states for continuous potentials. J. Chem. Phys. 124, 034116(1–14) (2006)Google Scholar
  39. 39.
    Poirier, B.: Reconciling semiclassical and Bohmian mechanics. V. Wavepacket dynamics. J. Chem. Phys. 128, 164115(1–15) (2008)Google Scholar
  40. 40.
    Babyuk, D., Wyatt, R.E.: Coping with the node problem in quantum hydrodynamics: the covering function method. J. Chem. Phys. 121, 9230–9238 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Garashchuk, S., Rassolov, V.A.: Modified quantum trajectory dynamics using a mixed wave function representation. J. Chem. Phys. 120, 8711–8715 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Gindensperger, E., Meier, C., Beswick, J.A.: Mixing quantum and classical dynamics using Bohmian trajectories. J. Chem. Phys. 113, 9369–9372 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    Gindensperger, E., Meier, C., Beswick, J.A.: Quantum-classical including continuum states using quantum trajectories. J. Chem. Phys. 116, 8–13 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Gindensperger, E., Meier, C., Beswick, J.A., Heitz, M.-C.: Quantum-classical description of rotational diffractive scattering using Bohmian trajectories: comparison with full quantum wave packet results. J. Chem. Phys. 116, 10051–10059 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    Meier, C., Beswick, J.A.: Femtosecond pump-probe spectroscopy of \({\rm I}_2\) in a dense rare gas environment: a mixed quantum/classical study of vibrational decoherence. J. Chem. Phys. 121, 4550–4558 (2004)Google Scholar
  46. 46.
    Meierk, C.: Mixed quantum-classical treatment of vibrational decoherence. Phys. Rev. Lett. 93, 173003(1–4) (2004)Google Scholar
  47. 47.
    Burghardt, I., Cederbaum, L.S.: Hydrodynamic equations for mixed quantum states. I. General formulation. J. Chem. Phys. 115, 10303–10311 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    Burghardt, I., Cederbaum, L.S.: Hydrodynamic equations for mixed quantum states. II. Coupled electronic states. J. Chem. Phys. 115, 10312–10322 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    Burghardt, I., Parlant, G.: On the dynamics of coupled Bohmian and phase–space variables: a new hybrid quantum-classical approach. J. Chem. Phys. 120, 3055–3058 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    Burghardt, I., Møller, K.B., Parlant, G., Cederbaum, L.S., Bittner, E.: Quantum hydrodynamics: mixed states, dissipation, and a new hybrid quantum-classical approach. Int. J. Quantum Chem. 100, 1153–1162 (2004)CrossRefGoogle Scholar
  51. 51.
    Hughes, K.H., Parry, S.M., Parlant, G., Burghardt, I.: A hybrid hydrodynamic-liouvillian approach to mixed quantum-classical dynamics: application to tunneling in a double well. J. Phys. Chem. A 111, 10269–10283 (2007)CrossRefGoogle Scholar
  52. 52.
    Garashchuk, S., Rassolov, V.A.: Semiclassical dynamics based on quantum trajectories. Chem. Phys. Lett. 364, 562–567 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    Garashchuk, S., Rassolov, V.A.: Quantum dynamics with Bohmian trajectories: energy conserving approximation to the quantum potential. Chem. Phys. Lett. 376, 358–363 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    Garashchuk, S., Rassolov, V.A.: Energy conserving approximations to the quantum potential: dynamics with linearized quantum force. J. Chem. Phys. 120, 1181–1190 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    Garashchuk, S., Rassolov, V.A.: Bohmian dynamics on subspaces using linearized quantum force. J. Chem. Phys. 120, 6815–6825 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    Sanz, A.S., Borondo, F., Miret-Artés, S.: Causal trajectories description of atom diffraction by surfaces. Phys. Rev. B 61, 7743–7751 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    Sanz, A.S., Borondo, F., Miret-Artés, S.: On the classical limit in atom-surface diffraction. Europhys. Lett. 55, 303–309 (2001)ADSCrossRefGoogle Scholar
  58. 58.
    Sanz, A.S.: Una visión causal de los procesos de dispersión cuánticos. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid (2003)Google Scholar
  59. 59.
    Sanz, A.S., Borondo, F., Miret-Artés, S.: Particle diffraction studied using quantum trajectories. J. Phys.: Condens. Matter 14, 6109–6145 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    Spurk, J.H.: Fluid Dynamics. Springer-Verlag, Berlin (1997)zbMATHGoogle Scholar
  61. 61.
    Sanz, A.S., Miret-Artés, S.: Selective adsorption resonances: quantum and stochastic approaches. Phys. Rep. 451, 37–154 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    Sanz, A.S., Miret-Artés, S.: Aspects of nonlocality from a quantum trajectory perspective: a WKB approach to Bohmian mechanics. Chem. Phys. Lett. 445, 350–354 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1980)zbMATHGoogle Scholar
  64. 64.
    Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8, 143–182 (1952)MathSciNetADSzbMATHCrossRefGoogle Scholar
  65. 65.
    Takabayasi, T.: Remarks on the formulation of quantum mechanics with classical pictures and on relations between linear scalar fields and hydrodynamical fluids. Prog. Theor. Phys. 9, 187–222 (1953)MathSciNetADSzbMATHCrossRefGoogle Scholar
  66. 66.
    Sanz, A.S., Miret-Artés, S.: A trajectory-based understanding of quantum interference. J. Phys. A 41, 435303(1–23) (2008)Google Scholar
  67. 67.
    Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989)ADSCrossRefGoogle Scholar
  68. 68.
    Shimizu, F., Shimizu, K., Takuma, H.: Double-slit interference with ultracold metastable neon atoms. Phys. Rev. A 46, R17–R20 (1992)ADSCrossRefGoogle Scholar
  69. 69.
    Dimitrova, T.L., Weis, A.: The wave-particle duality of light: a demonstration experiment. Am. J. Phys. 76, 137–142 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    Dimitrova, T.L., Weis, A.: Lecture demonstrations of interference and quantum erasing with single photons. Phys. Scr. T135, 014003(1–4) (2009)Google Scholar
  71. 71.
    Dimitrova, T.L., Weis, A.: Single photon quantum erasing: a demonstration experiment. Eur. J. Phys. 31, 625–637 (2010)CrossRefGoogle Scholar
  72. 72.
    Landauer, R., Martin, Th.: Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217–228 (1994)ADSCrossRefGoogle Scholar
  73. 73.
    Muga, J.G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1, 2nd edn. Springer Series Lecture Notes in Physics, vol. 734. Springer, Berlin (2008)Google Scholar
  74. 74.
    Muga, J.G., Ruschhaupt A., Campo, A. (eds.): Time in Quantum Mechanics, vol. 2. Springer Series Lecture Notes in Physics, vol. 789. Springer, Berlin (2009)Google Scholar
  75. 75.
    Guantes, R., Sanz, A.S., Margalef-Roig, J., Miret-Artés, S.: Atom-surface diffraction: a trajectory description. Surf. Sci. Rep. 53, 199–330 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40, 322–326 (1926)ADSGoogle Scholar
  77. 77.
    London, F.: Planck’s constant and low temperature transfer. Rev. Mod. Phys. 17, 310–320 (1945)ADSCrossRefGoogle Scholar
  78. 78.
    Fetter, A.L., Svidzinsky, A.A.: Vortices in a trapped dilute Bose–Einstein condensate J. Phys.: Condens. Matter 13, R135–R194 (2001)ADSCrossRefGoogle Scholar
  79. 79.
    McCullough, E.A., Wyatt, R.E.: Quantum dynamics of the collinear (H, \({\rm H}_2\)) reaction. J. Chem. Phys. 51, 1253–1254 (1969)Google Scholar
  80. 80.
    McCullough, E.A., Wyatt, R.E.: Dynamics of the collinear H + \({\rm H}_2\) reaction. I. Probability density and flux. J. Chem. Phys. 54, 3578–3591 (1971)Google Scholar
  81. 81.
    McCullough, E.A., Wyatt, R.E.: Dynamics of the collinear H + \({\rm H}_2\) reaction. II. Energy analysis. J. Chem. Phys. 54, 3592–3600 (1971)Google Scholar
  82. 82.
    Hirschfelder, J.O., Tang, K.T.: Quantum mechanical streamlines. III. Idealized reactive atom–diatomic molecule collision. J. Chem. Phys. 64, 760–785 (1976)ADSCrossRefGoogle Scholar
  83. 83.
    Bader, R.F.W.: Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule. J. Chem. Phys. 73, 2871–2883 (1980)MathSciNetADSCrossRefGoogle Scholar
  84. 84.
    Gomes, J.A.N.F.: Delocalized magnetic currents in benzene. J. Chem. Phys. 78, 3133–3139 (1983)ADSCrossRefGoogle Scholar
  85. 85.
    Gomes, J.A.N.F.: Topological elements of the magnetically induced orbital current densities. J. Chem. Phys. 78, 4585–4591 (1983)ADSCrossRefGoogle Scholar
  86. 86.
    Lazzeretti, P.: Ring currents. Prog. Nuc. Mag. Res. Spect. 36, 1–88 (2000)CrossRefGoogle Scholar
  87. 87.
    Pelloni, S., Faglioni, F., Zanasi R., Lazzeretti, P.: Topology of magnetic-field-induced current-density field in diatropic monocyclic molecules. Phys. Rev. A 74, 012506(1–8) (2006)Google Scholar
  88. 88.
    Pelloni, S., Lazzeretti, P., Zanasi, R.: Spatial ring current model of the [2.2]paracyclophane molecule. J. Phys. Chem. A 111, 3110–3123 (2007)CrossRefGoogle Scholar
  89. 89.
    Pelloni, S., Lazzeretti, P., Zanasi, R.: Topological models of magnetic field induced current density field in small molecules. Theor. Chem. Acc. 123, 353–364 (2009)CrossRefGoogle Scholar
  90. 90.
    Pelloni, S., Lazzeretti, P.: Spatial ring current model for the prismane molecule. J. Phys. Chem. A 112, 5175–5186 (2008)CrossRefGoogle Scholar
  91. 91.
    Pelloni, S., Lazzeretti, P.: Topology of magnetic-field induced electron current density in the cubane molecule. J. Chem. Phys. 128, 194305(1–10) (2008)Google Scholar
  92. 92.
    Pelloni, S., Lazzeretti, P.: Ring current models for acetylene and ethylene molecules. Chem. Phys. 356, 153–163 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    García-Cuesta, I., Sánchez de Merás, A., Pelloni, S., Lazzeretti, P.: Understanding the ring current effects on magnetic shielding of hydrogen and carbon nuclei in naphthalene and anthracene. J. Comput. Chem. 30, 551–564 (2009)CrossRefGoogle Scholar
  94. 94.
    Landau, L.D., Lifschitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1959)Google Scholar
  95. 95.
    Bialynicki-Birula, I., Cieplak, M., Kaminski, J.: Theory of Quanta, Chap. 9. Oxford University Press, Oxford (1992)Google Scholar
  96. 96.
    Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A 133, 60–72 (1931)ADSCrossRefGoogle Scholar
  97. 97.
    Riess, J.: Nodal structure, nodal flux fields, and flux quantization in stationary quantum states. Phys. Rev. D 2, 647–653 (1970)ADSCrossRefGoogle Scholar
  98. 98.
    Hirschfelder, J.O., Goebel, C.J., Bruch, L.W.: Quantized vortices around wavefunction nodes. II. J. Chem. Phys. 61, 5456–5459 (1974)ADSCrossRefGoogle Scholar
  99. 99.
    Wu, H., Sprung, D.W.L.: Inverse-square potential and the quantum vortex. Phys. Rev. A 49, 4305–4311 (1994)ADSCrossRefGoogle Scholar
  100. 100.
    Bialynicki-Birula, I., Bialynicka-Birula, Z.: Magnetic monopoles in the hydrodynamic formulation of quantum mechanics. Phys. Rev. D 3, 2410–2412 (1971)ADSCrossRefGoogle Scholar
  101. 101.
    Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)MathSciNetADSzbMATHCrossRefGoogle Scholar
  102. 102.
    Sanz, A.S., Borondo, F., Miret-Artés, S.: Quantum trajectories in atom-surface scattering with single adsorbates: the role of quantum vortices. J. Chem. Phys. 120, 8794–8806 (2004)ADSCrossRefGoogle Scholar
  103. 103.
    Sanz, A.S., Borondo, F., Miret-Artés, S.: Role of quantum vortices in atomic scattering from single adsorbates. Phys. Rev. B 69, 115413(1–5) (2004)Google Scholar
  104. 104.
    Rosen, N.: The relation between classical and quantum mechanics. Am. J. Phys. 32, 597–600 (1964)ADSCrossRefGoogle Scholar
  105. 105.
    Rosen, N.: Quantum particles and classical particles. Found. Phys. 16, 687–700 (1986)MathSciNetADSCrossRefGoogle Scholar
  106. 106.
    Ghosh, S.K., Deb, B.M.: Densities, density-functionals and electron fluids. Phys. Rep. 92, 1–44 (1982)ADSCrossRefGoogle Scholar
  107. 107.
    Sanz, A.S., Miret-Artés, S.: A causal look into the quantum Talbot effect. J. Chem. Phys. 126, 234106(1–11) (2007)Google Scholar
  108. 108.
    Davidović, M., Arsenović, D., Bozić, M., Sanz, A.S., Miret-Artés, S.: Should particle trajectories comply with the transverse momentum distribution?. Eur. Phys. J. Special Topics 160, 95–104 (2008)Google Scholar
  109. 109.
    Yang, C.-D.: Quantum dynamics of hydrogen atom in complex space. Ann. Phys. (N.Y.) 319, 399–443 (2005)Google Scholar
  110. 110.
    Yang, C.-D.: Wave-particle duality in complex space. Ann. Phys. (N.Y.) 319, 444–470 (2005)Google Scholar
  111. 111.
    Yang, C.-D.: Solving quantum trajectories in Coulomb potential by quantum Hamilton–Jacobi theory. Int. J. Quantum Chem. 106, 1620–1639 (2006)Google Scholar
  112. 112.
    Yang, C.-D.: On modeling and visualizing single-electron spin motion. Chaos, Solitons & Fractals 30, 41–50 (2006)ADSCrossRefGoogle Scholar
  113. 113.
    Yang, C.-D.: Modeling quantum harmonic oscillator in complex domain. Chaos, Solitons & Fractals 30, 342–362 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  114. 114.
    Yang, C.-D.: Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom. Ann. Phys. 321, 2876–2926 (2006)ADSzbMATHCrossRefGoogle Scholar
  115. 115.
    Yang, C.-D.: The origin and proof of quantization axiom \({\mathbf p} \to \hat{\mathbf p} = -i\hbar\nabla\) in complex spacetime. Chaos, Solitons & Fractals 32, 274–283 (2007)Google Scholar
  116. 116.
    Yang, C.-D.: Complex tunneling dynamics. Chaos, Solitons & Fractals 32, 312–345 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  117. 117.
    Yang, C.-D.: Quantum motion in complex space. Chaos, Solitons & Fractals 33, 1073–1092 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  118. 118.
    Fürth, R.: Über Einige Beziehungen Zwischen Klassischer Statistik und Quantenmechanick. Z. Phys. 81, 143–162 (1993)Google Scholar
  119. 119.
    Comisar, G.G.: Brownian motion of nonrelativistic quantum mechanics. Phys. Rev. 138, B1332–B1337 (1965)MathSciNetADSCrossRefGoogle Scholar
  120. 120.
    Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations.. Phys. Rev. 96, 208–216 (1954)MathSciNetADSzbMATHCrossRefGoogle Scholar
  121. 121.
    Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 172, 93–122 (1989)MathSciNetADSCrossRefGoogle Scholar
  122. 122.
    John, M.V.: Modified de Broglie–Bohm approach to quantum mechanics. Found. Phys. Lett. 15, 329–343 (2002)MathSciNetCrossRefGoogle Scholar
  123. 123.
    John, M.V.: Probability and complex quantum trajectories. Ann. Phys. (N.Y.) 324, 220–231 (2010)ADSCrossRefGoogle Scholar
  124. 124.
    Sanz, A.S., Miret–Artés, S.: Interplay of causticity and vorticality within the complex quantum Hamilton–Jacobi formalism. Chem. Phys. Lett. 458, 239–243 (2008)ADSCrossRefGoogle Scholar
  125. 125.
    Pauli, W.: Die allgemeine Prinzipien der Wellenmechanick. In: Geiger, H. , Scheel, K. (eds) Handbuch der Physik, vol. 24, part 1, 2nd edn. Springer-Verlag, Berlin (1933)Google Scholar
  126. 126.
    Gottfried, K.: Quantum Mechanics. W.A. Benjamin, New York (1966)Google Scholar
  127. 127.
    Floyd, E.R.: Bohr-Sommerfeld quantization with the effective action variable. Phys. Rev. D 25, 1547–1551 (1982)ADSCrossRefGoogle Scholar
  128. 128.
    Floyd, E.R.: Modified potential and Bohm’s quantum-mechanical potential. Phys. Rev. D 26, 1339–1347 (1982)ADSCrossRefGoogle Scholar
  129. 129.
    Floyd, E.R.: Arbitrary initial conditions of nonlocal hidden-variables. Phys. Rev. D 29, 1842–1844 (1984)ADSCrossRefGoogle Scholar
  130. 130.
    Floyd, E.R.: Closed-form solutions for the modified potential. Phys. Rev. D 34, 3246–3249 (1986)ADSCrossRefGoogle Scholar
  131. 131.
    Floyd, E.R.: Where and why the generalized Hamilton–Jacobi representation describes microstates of the Schrödinger wave function. Found. Phys. Lett. 9, 489–497 (1996)MathSciNetCrossRefGoogle Scholar
  132. 132.
    Floyd, E.R.: Reflection time and the Goos–Hänchen effect for reflection by a semi-infinite rectangular barrier. Found. Phys. Lett. 13, 235–251 (2000)Google Scholar
  133. 133.
    Floyd, E.R.: Interference, reduced action, and trajectories. Found. Phys. 37, 1386–1402 (2007)Google Scholar
  134. 134.
    Floyd, E.R.: Welcher Weg? A trajectory representation of a quantum Young’s diffraction experiment. Found. Phys. 37, 1403–1420 (2007)Google Scholar
  135. 135.
    Faraggi, A.E., Matone, M.: Quantum transformations. Phys. Lett. A 249, 180–190 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  136. 136.
    Faraggi, A.E., Matone, M.: The equivalence principle of quantum mechanics: uniqueness theorem. Phys. Lett. B 437, 369–380 (1998)ADSCrossRefGoogle Scholar
  137. 137.
    Faraggi, A.E., Matone, M.: Equivalence principle, Planck length and quantum Hamilton–Jacobi equation. Phys. Lett. B 445, 77–81 (1998)MathSciNetADSCrossRefGoogle Scholar
  138. 138.
    Faraggi, A.E., Matone, M.: Equivalence principle: tunneling, quantized spectra and trajectories from the quantum HJ equation. Phys. Lett. B 445, 357–365 (1999)ADSCrossRefGoogle Scholar
  139. 139.
    Faraggi, A.E., Matone, M.: Quantum mechanics from an equivalence principle. Phys. Lett. B 450, 34–40 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  140. 140.
    Faraggi, A.E., Matone, M.: The equivalence postulate of quantum mechanics. Int. J. Mod. Phys. A 15, 1869–2017 (2000)MathSciNetADSzbMATHGoogle Scholar
  141. 141.
    Barker-Jarvis, J., Kabos, P.: Modified de Broglie approach applied to the Schrödinger and Klein–Gordon equation. Phys. Rev. A 68, 042110(1–8) (2003)Google Scholar
  142. 142.
    Chou, C.-C., Sanz, A.S., Miret-Artés S., Wyatt, R.E.: Hydrodynamic view of wave-packet interference: quantum caves. Phys. Rev. Lett. 102, 250401(1–4) (2009)Google Scholar
  143. 143.
    Chou, C.-C., Sanz, A.S., Miret-Artés, S., Wyatt, R.E.: Quantum interference within the complex quantum Hamilton–Jacobi formalism. Ann. Phys. (N.Y.) 325, 2193–2211 (2010)Google Scholar
  144. 144.
    Leacock, R.A., Padgett, M.J.: Hamilton–Jacobi theory and the quantum action variable. Phys. Rev. Lett. 50, 3–6 (1983)Google Scholar
  145. 145.
    Leacock, R.A., Padgett, M.J.: Hamilton–Jacobi/action-angle quantum mechanics. Phys. Rev. D 28, 2491–2502 (1983)MathSciNetADSCrossRefGoogle Scholar
  146. 146.
    Tannor, D.J.: Introduction to Quantum Mechanics: A Time Dependent Perspective. University Science Press, Sausalito (2006)Google Scholar
  147. 147.
    Boiron, M., Lombardi, M.: Complex trajectory method in semiclassical of wave packets. J. Chem. Phys. 108, 3431–3444 (1998)ADSCrossRefGoogle Scholar
  148. 148.
    Goldfarb, Y., Degani, I., Tannor, D.J.: Bohmian mechanics with complex action: a new trajectory formulation of quantum mechanics. J. Chem. Phys. 125, 231103(1–4) (2006)Google Scholar
  149. 149.
    Sanz, A.S., Miret-Artés, S.: Comment on “Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics” [J. Chem. Phys. 125, 231103 (2006)]. J. Chem. Phys. 127, 197101(1–3) (2007)Google Scholar
  150. 150.
    Goldfarb, Y., Degani, I., Tannor, D.J.: Response to “Comment on ‘Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics’ ” [J. Chem. Phys. 127, 197101 (2007)]. J. Chem. Phys. 127, 197102(1–3) (2007)Google Scholar
  151. 151.
    Goldfarb, Y., Schiff, J., Tannor, D.J.: Unified derivation of Bohmian methods and the incorporation of interference effects. J. Phys. Chem. A 111, 10416–10421 (2007)Google Scholar
  152. 152.
    Goldfarb, Y., Degani, I., Tannor, D.J.: Semiclassical approximation with zero velocity trajectories. Chem. Phys. 338, 106–112 (2007)ADSCrossRefGoogle Scholar
  153. 153.
    Goldfarb, Y., Tannor, D.J.: Interference in Bohmian mechanics with complex action. J. Chem. Phys. 127, 161101(1–4) (2007)Google Scholar
  154. 154.
    Chou, C.-C., Wyatt, R.E.: Computational method for the quantum Hamilton–Jacobi equation: bound states in one dimension. J. Chem. Phys. 125, 174103(1–10) (2006)Google Scholar
  155. 155.
    Chou, C.-C., Wyatt, R.E.: Computational method for the quantum Hamilton–Jacobi equation: one-dimensional scattering problems. Phys. Rev. E 74, 066702(1–9) (2006)Google Scholar
  156. 156.
    Chou, C.-C., Wyatt, R.E.: Quantum trajectories in complex space. Phys. Rev. A 76, 012115(1–14) (2007)Google Scholar
  157. 157.
    Rowland, B.A., Wyatt, R.E.: Analysis of barrier scattering with real and complex quantum trajectories. J. Phys. Chem. A 111, 10234–10250 (2007)CrossRefGoogle Scholar
  158. 158.
    Wyatt, R.E., Rowland, B.A.: Quantum trajectories in complex space: multidimensional barrier transmission. J. Chem. Phys. 127, 044103(1–12) (2007)Google Scholar
  159. 159.
    David, J.K., Wyatt, R.E.: Barrier scattering with complex-valued quantum trajectories: taxonomy and analysis of isochrones. J. Chem. Phys. 128, 094102(1–9) (2008)Google Scholar
  160. 160.
    Bohr, N.: Über die Anwendung der Quantentheorie auf den Atombau I. Die Grundpostulate der Quantentheorie. Z. Physik 13, 117–165 (1923)ADSCrossRefGoogle Scholar
  161. 161.
    Liboff, R.L.: The correspondence principle revisited. Phys. Today 37, 50–55 (1984)CrossRefGoogle Scholar
  162. 162.
    Berry, M.V.: Quantum chaology, not quantum chaos. Phys. Scr. 40, 335–336 (1989)ADSzbMATHCrossRefGoogle Scholar
  163. 163.
    Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455–457 (1927)ADSCrossRefGoogle Scholar
  164. 164.
    Elmore, W.C., Heald, M.A.: Physics of Waves. Dover Publications, New York (1985)Google Scholar
  165. 165.
    Schrödinger, E.: Discussion of probability relation between separated systems. Proc. Cambridge Phil. Soc. 31, 555–563 (1935)ADSCrossRefGoogle Scholar
  166. 166.
    Schrödinger, E.: Probability relations between separated systems. Proc. Camb. Phil. Soc. 32, 446–452 (1936)ADSCrossRefGoogle Scholar
  167. 167.
    Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergiemko, V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)Google Scholar
  168. 168.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  169. 169.
    Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)Google Scholar
  170. 170.
    Giulini, D., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D.: Decoherence and the Appearence of a Classical World in Quantum Theory. Springer, Berlin (1996)Google Scholar
  171. 171.
    Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243 (1985)ADSCrossRefGoogle Scholar
  172. 172.
    Dewdney, C.: Nonlocally corelated trajectories in 2-particle quantum mechanics. Found. Phys. 18, 867–886 (1988)MathSciNetADSCrossRefGoogle Scholar
  173. 173.
    Lam, M.M., Dewdney, C.: Locality and nonlocality in correlated two-particle interferometry. Phys. Lett. A 150, 127–135 (1990)ADSCrossRefGoogle Scholar
  174. 174.
    Guay, E., Marchildon, L.: Two-particle interference in standard and Bohmian quantum mechanics. J. Phys. A 36, 5617–5624 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  175. 175.
    Na, K., Wyatt, R.E.: Quantum hydrodynamic analysis of decoherence: quantum trajectories and stress tensor. Phys. Lett. A 306, 97–103 (2002)ADSzbMATHCrossRefGoogle Scholar
  176. 176.
    Na, K., Wyatt, R.E.: Quantum hydrodynamic analysis of decoherence. Phys. Scr. 67, 169–180 (2003)ADSzbMATHCrossRefGoogle Scholar
  177. 177.
    Sanz, A.S., Borondo, F.: A quantum trajectory description of decoherence. Eur. Phys. J. D 44, 319–326 (2007)ADSCrossRefGoogle Scholar
  178. 178.
    Sanz, A.S., Borondo, F.: Contextuality, decoherence and quantum trajectories. Chem. Phys. Lett. 478, 301–306 (2009)ADSCrossRefGoogle Scholar
  179. 179.
    Oriols, X.: Quantum-trajectory approach to time-dependent transport in mesoscopic system with electron–electron interactions. Phys. Rev. Lett. 98, 066803(1–4) (2007)Google Scholar
  180. 180.
    Billing, G.D.: Classical path method in inelastic and reactive scattering. Int. Rev. Phys. Chem. 13, 309–335 (1994)CrossRefGoogle Scholar
  181. 181.
    Tully, J.C.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990)ADSCrossRefGoogle Scholar
  182. 182.
    Tully, J.C.: Nonadiabatic molecular dynamics. Int. J. Quantum Chem. 40(S25), 299–309 (1991)CrossRefGoogle Scholar
  183. 183.
    Prezhdo, O.V., Brooksby, C.: Quantum backreaction through the Bohmian particles. Phys. Rev. Lett. 86, 3215–3219 (2001)ADSCrossRefGoogle Scholar
  184. 184.
    Sanz, A.S., Borondo, F., Bastiaans, M.: Loss of coherence in double-slit diffraction experiments. Phys. Rev. A. 71, 042103(1–7) (2005)Google Scholar
  185. 185.
    Razavy, M.: Classical and Quantum Dissipative Systems. Imperial College Press, London (2005)zbMATHGoogle Scholar
  186. 186.
    Kostin, M.D.: On the Schrödinger–Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972)Google Scholar
  187. 187.
    Kostin, M.D.: Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 12, 145–151 (1975)Google Scholar
  188. 188.
    Burghardt, I., Möller, K.B.: Quantum dynamics for dissipative systems: a hydrodynamic perspective. J. Chem. Phys. 117, 7409–7425 (2002)Google Scholar
  189. 189.
    Trahan, C.J., Wyatt, R.E.: Evolution of classical and quantum phase-space distributions: a new trajectory approach for phase–space hydrodynamics. J. Chem. Phys. 119, 7017–7029 (2003)Google Scholar
  190. 190.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  191. 191.
    Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  192. 192.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (1987)Google Scholar
  193. 193.
    Vink, J.C.: Quantum mechanics in terms of discrete beables. Phys. Rev. A 48, 1808–1818 (1993)ADSCrossRefGoogle Scholar
  194. 194.
    Kershaw, D.: Theory of hidden variables. Phys. Rev. 136, B1850–B1856 (1964)MathSciNetADSCrossRefGoogle Scholar
  195. 195.
    Nelson, E.: Derivation of the Shrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)ADSCrossRefGoogle Scholar
  196. 196.
    Olavo, L.S.F.: Foundations of quantum mechanics: connection with stochastic processes. Phys. Rev. A 61, 052109(1–14) (2000)Google Scholar
  197. 197.
    Grabert, H., Hänggi, P., Talkner, P.: Is quantum mechanics equivalent to a classical stochastic process?. Phys. Rev. A 19, 2440–2445 (1979)MathSciNetADSCrossRefGoogle Scholar
  198. 198.
    Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954)MathSciNetADSzbMATHCrossRefGoogle Scholar
  199. 199.
    Santos, L.F., Escobar, C.O.: Enhanced diffusion and the continuous spontaneous localization model. Phys. Rev. A 60, 2712–2715 (1999)ADSCrossRefGoogle Scholar
  200. 200.
    Bassi, A., Ferialdi, L.: Non-Markovian quantum trajectories: an exact result. Phys. Rev. Lett. 103, 050403(1–4) (2009)Google Scholar
  201. 201.
    Lorenzen, F., de Ponte, M.A., Moussa, M.H.Y.: Extending Bell’s beables to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. Phys. Rev. A 80, 032101(1–8) (2009)Google Scholar
  202. 202.
    Englert, B.-G., Scully, M.O., Süssmann, G., Walther, H.: Surrealistic Bohm trajectories. Z. Naturforsch. A 47, 1175–1186 (1992)Google Scholar
  203. 203.
    Dürr, D., Fusseder, F., Goldstein, S., Zhangí, N.: Comment on “Surrealistic Bohm trajectories”. Z. Naturforsch. A 48, 1261–1262 (1993)Google Scholar
  204. 204.
    Englert, B.-G., Scully, M.O., Süssmann, G., Walther, H.: Reply to Comment on “Surrealistic Bohm trajectories”. Z. Naturforsch. A 48, 1263–1264 (1993)Google Scholar
  205. 205.
    Becker, L.: On the supposed surrealism of Bohmian mechanics. Z. Naturforsch. A 52, 533–538 (1997)Google Scholar
  206. 206.
    Scully, M.O.: Do Bohm trajectories always provide a trustworthy physical picture of particle motion? Phys. Scr. T76, 41–46 (1998)MathSciNetADSCrossRefGoogle Scholar
  207. 207.
    Hiley, B.J., Callaghan, R.E.: Delayed-choice experiments and the Bohm approach. Phys. Scr. 74, 336–348 (2006)MathSciNetADSCrossRefGoogle Scholar
  208. 208.
    Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011)ADSCrossRefGoogle Scholar
  209. 209.
    Wiseman, H.M.: Grounding Bohmian mechanics in weak values and bayesianism. New. J. Phys. 9, 165(1–12) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Ángel S. Sanz
    • 1
  • Salvador Miret-Artés
    • 1
  1. 1.Instituto de Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations