Skip to main content

Quantum Mechanics with Trajectories

  • Chapter
  • First Online:
Book cover A Trajectory Description of Quantum Processes. I. Fundamentals

Part of the book series: Lecture Notes in Physics ((LNP,volume 850))

Abstract

Bohmian mechanics allows to understand the quantum world in a classical-like fashion, by means of trajectories evolving throughout configuration space. This appealing feature has stimulated its application nowadays to many different problems from atomic and molecular physics, condensed matter physics, chemical physics or quantum chemistry, for example. This is a remarkable growth if one takes into account that this causal theory of quantum motion started as a simple hidden-variable model to disproof von Neumann’s theorem on the impossibility of hidden variables in quantum mechanics, and its applications initially covered fundamental problems. In this Chapter, the main elements of this theory are briefly revisited and they will be further developed in Volume 2. Furthermore, a contextualization of Bohmian trajectories with respect to alternative trajectory-based approaches to quantum mechanics, such as Feynman’s path integral, the semiclassical approximation, mixed/hybrid (quantum-classical) formulations or quantum (causal) stochastic trajectories, is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, when trying to solve the time-dependent Schrödinger equation by means of standard grid methods, \({{\mathcal{K}}}\) has to receive a special consideration. In order to avoid truncations of its nonlocal nature, the action of the kinetic operator is assumed in the momentum space (by means of the fast Fourier transform technique, for example), where this operator is local. Then, after acting on \(\varPsi\), the result (which is already affected by the value of \(\varPsi\) in all points of the grid) is put back in the configuration space.

  2. 2.

    Note that, unlike (6.6), the expression for \(\bar{v}\) is not symmetric with respect to \(\bar{\varPsi}^{\ast}.\) This is because, as previously mentioned, in this case the transformation is one to one, and therefore the complex conjugate wave field is not needed.

References

  1. Ballentine, L.E.: Ballentine: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    Google Scholar 

  2. Zurek, W.H., Wheeler, J.A.: Quantum Theory of Measurement. Princeton University Press, Princeton, NJ (1983)

    Google Scholar 

  3. Belinfante, F.J.: A Survey of Hidden-Variables Theories. Pergamon, New York (1973)

    Google Scholar 

  4. Tarozzi, G., van der Merwe, A. (eds.): Open Questions in Quantum Physics. Reidel, Dordrecht (1985)

    Google Scholar 

  5. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    Google Scholar 

  6. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952)

    Google Scholar 

  7. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180–193 (1952)

    Google Scholar 

  8. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  9. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  ADS  MATH  Google Scholar 

  10. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)

    Article  ADS  Google Scholar 

  11. Aspect, A., Grangier, P. Roger G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Google Scholar 

  12. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  13. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  14. Goldstein, S.: Quantum theory without observers—Part I. Phys. Today 51(3), 42–46 (1998)

    Article  Google Scholar 

  15. Goldstein, S.: Quantum theory without observers—Part II. Phys. Today 51(4), 38–42 (1998)

    Article  Google Scholar 

  16. Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, New York (2005)

    MATH  Google Scholar 

  17. Chattaraj, P.K. (ed.): Quantum Trajectories. CRC Press, Taylor and Francis, NY (2010)

    Google Scholar 

  18. Oriols, X., Mompart, J. (eds.): Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology. Pan Standford Publishing, Singapore (2011)

    Google Scholar 

  19. Weiner, J.H., Askar, A.: Particle method for the numerical solution of the time-dependent Schrödinger equation. J. Chem. Phys. 54, 3534–3541 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  20. Dey, B.K., Askar, A., Rabitz, H.: Multidimensional wave packet dynamics with the fluid dynamical formulation of the Schrödinger equation. J. Chem. Phys. 109, 8770–8782 (1998)

    Article  ADS  Google Scholar 

  21. Sales Mayor, F., Askar, A., Rabitz, H.A.: Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems. J. Chem. Phys. 111, 2423–2435 (1999)

    Google Scholar 

  22. Wyatt, R.E.: Quantum wave packet dynamics with trajectories: application to reactive scattering. J. Chem. Phys. 111, 4406–4413 (1999)

    Google Scholar 

  23. Wyatt, R.E.: Quantum wavepacket dynamics with trajectories: wavefunction synthesis along quantum paths. Chem. Phys. Lett. 313, 189–197 (1999)

    Article  ADS  Google Scholar 

  24. Lopreore, C., Wyatt, R.E.: Quantum wave packet dynamics with trajectories. Phys. Rev. Lett. 82, 5190–5193 (1999)

    Article  ADS  Google Scholar 

  25. Wyatt, R.E., Bittner, E.R.: Quantum wave packet dynamics with trajectories: implementation with adaptive Lagrangian grids. J. Chem. Phys. 113, 8898–8907 (2000)

    Article  ADS  Google Scholar 

  26. Hughes, K.H., Wyatt, R.E.: Wavepacket dynamics on dynamically adapting grids: application of the equidistribution principle. Chem. Phys. Lett. 366, 336–342 (2002)

    Article  ADS  Google Scholar 

  27. Hughes, K.H., Wyatt, R.E.: Wavepacket dynamics on arbitrary Lagrangian–Eulerian grids: application to an Eckart barrier. Phys. Chem. Chem. Phys. 5, 3905–3910 (2003)

    Article  Google Scholar 

  28. Trahan, C.J., Wyatt, R.E.: An arbitrary Lagrangian–Eulerian approach to solving the quantum hydrodynamic equations of motion: equidistribution with “smart” springs. J. Chem. Phys. 118, 4784–4790 (2003)

    Article  ADS  Google Scholar 

  29. Kendrick, B.K.: A new method for solving the quantum hydrodynamic equations of motion. J. Chem. Phys. 119, 5805–5817 (2003)

    Article  ADS  Google Scholar 

  30. Kendrick, B.K.: Quantum hydrodynamics: Application to N-dimensional reactive scattering. J. Chem. Phys. 121, 2471–2482 (2004)

    Article  ADS  Google Scholar 

  31. Zhao, Y., Makri, N.: Bohmian versus semiclassical description of interference phenomena. J. Chem. Phys. 119, 60–67 (2003)

    Article  ADS  Google Scholar 

  32. Makri, N.: Forward–backward quantum dynamics for time correlation functions. J. Phys. Chem. A 108, 806–812 (2004)

    Article  Google Scholar 

  33. Liu, J., Makri, N.: Monte Carlo Bohmian dynamics from trajectory stability properties. J. Phys. Chem. A 108, 5408–5416 (2004)

    Article  Google Scholar 

  34. Bittner, E.R.: Quantum initial value representations using approximate Bohmian trajectories. J. Chem. Phys. 119, 1358–1364 (2003)

    Article  ADS  Google Scholar 

  35. Garashchuk, S., Rassolov, V.A.: Semiclassical dynamics with quantum trajectories: formulation and comparison with the semiclassical initial value representation propagator. J. Chem. Phys. 118, 2482–2490 (2003)

    Article  ADS  Google Scholar 

  36. Poirier, B.: Reconciling semiclassical and Bohmian mechanics. I. Stationary states. J. Chem. Phys. 121, 4501–4515 (2004)

    Article  ADS  Google Scholar 

  37. Trahan, C., Poirier, B.: Reconciling semiclassical and Bohmian mechanics. II. Scattering states for discontinuous potentials. J. Chem. Phys. 124, 034115(1–18) (2006)

    Google Scholar 

  38. Trahan, C., Poirier, B.: Reconciling semiclassical and Bohmian mechanics. III. Scattering states for continuous potentials. J. Chem. Phys. 124, 034116(1–14) (2006)

    Google Scholar 

  39. Poirier, B.: Reconciling semiclassical and Bohmian mechanics. V. Wavepacket dynamics. J. Chem. Phys. 128, 164115(1–15) (2008)

    Google Scholar 

  40. Babyuk, D., Wyatt, R.E.: Coping with the node problem in quantum hydrodynamics: the covering function method. J. Chem. Phys. 121, 9230–9238 (2004)

    Article  ADS  Google Scholar 

  41. Garashchuk, S., Rassolov, V.A.: Modified quantum trajectory dynamics using a mixed wave function representation. J. Chem. Phys. 120, 8711–8715 (2004)

    Article  ADS  Google Scholar 

  42. Gindensperger, E., Meier, C., Beswick, J.A.: Mixing quantum and classical dynamics using Bohmian trajectories. J. Chem. Phys. 113, 9369–9372 (2000)

    Article  ADS  Google Scholar 

  43. Gindensperger, E., Meier, C., Beswick, J.A.: Quantum-classical including continuum states using quantum trajectories. J. Chem. Phys. 116, 8–13 (2002)

    Article  ADS  Google Scholar 

  44. Gindensperger, E., Meier, C., Beswick, J.A., Heitz, M.-C.: Quantum-classical description of rotational diffractive scattering using Bohmian trajectories: comparison with full quantum wave packet results. J. Chem. Phys. 116, 10051–10059 (2002)

    Article  ADS  Google Scholar 

  45. Meier, C., Beswick, J.A.: Femtosecond pump-probe spectroscopy of \({\rm I}_2\) in a dense rare gas environment: a mixed quantum/classical study of vibrational decoherence. J. Chem. Phys. 121, 4550–4558 (2004)

    Google Scholar 

  46. Meierk, C.: Mixed quantum-classical treatment of vibrational decoherence. Phys. Rev. Lett. 93, 173003(1–4) (2004)

    Google Scholar 

  47. Burghardt, I., Cederbaum, L.S.: Hydrodynamic equations for mixed quantum states. I. General formulation. J. Chem. Phys. 115, 10303–10311 (2001)

    Article  ADS  Google Scholar 

  48. Burghardt, I., Cederbaum, L.S.: Hydrodynamic equations for mixed quantum states. II. Coupled electronic states. J. Chem. Phys. 115, 10312–10322 (2001)

    Article  ADS  Google Scholar 

  49. Burghardt, I., Parlant, G.: On the dynamics of coupled Bohmian and phase–space variables: a new hybrid quantum-classical approach. J. Chem. Phys. 120, 3055–3058 (2004)

    Article  ADS  Google Scholar 

  50. Burghardt, I., Møller, K.B., Parlant, G., Cederbaum, L.S., Bittner, E.: Quantum hydrodynamics: mixed states, dissipation, and a new hybrid quantum-classical approach. Int. J. Quantum Chem. 100, 1153–1162 (2004)

    Article  Google Scholar 

  51. Hughes, K.H., Parry, S.M., Parlant, G., Burghardt, I.: A hybrid hydrodynamic-liouvillian approach to mixed quantum-classical dynamics: application to tunneling in a double well. J. Phys. Chem. A 111, 10269–10283 (2007)

    Article  Google Scholar 

  52. Garashchuk, S., Rassolov, V.A.: Semiclassical dynamics based on quantum trajectories. Chem. Phys. Lett. 364, 562–567 (2002)

    Article  ADS  Google Scholar 

  53. Garashchuk, S., Rassolov, V.A.: Quantum dynamics with Bohmian trajectories: energy conserving approximation to the quantum potential. Chem. Phys. Lett. 376, 358–363 (2003)

    Article  ADS  Google Scholar 

  54. Garashchuk, S., Rassolov, V.A.: Energy conserving approximations to the quantum potential: dynamics with linearized quantum force. J. Chem. Phys. 120, 1181–1190 (2004)

    Article  ADS  Google Scholar 

  55. Garashchuk, S., Rassolov, V.A.: Bohmian dynamics on subspaces using linearized quantum force. J. Chem. Phys. 120, 6815–6825 (2004)

    Article  ADS  Google Scholar 

  56. Sanz, A.S., Borondo, F., Miret-Artés, S.: Causal trajectories description of atom diffraction by surfaces. Phys. Rev. B 61, 7743–7751 (2000)

    Article  ADS  Google Scholar 

  57. Sanz, A.S., Borondo, F., Miret-Artés, S.: On the classical limit in atom-surface diffraction. Europhys. Lett. 55, 303–309 (2001)

    Article  ADS  Google Scholar 

  58. Sanz, A.S.: Una visión causal de los procesos de dispersión cuánticos. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid (2003)

    Google Scholar 

  59. Sanz, A.S., Borondo, F., Miret-Artés, S.: Particle diffraction studied using quantum trajectories. J. Phys.: Condens. Matter 14, 6109–6145 (2002)

    Article  ADS  Google Scholar 

  60. Spurk, J.H.: Fluid Dynamics. Springer-Verlag, Berlin (1997)

    MATH  Google Scholar 

  61. Sanz, A.S., Miret-Artés, S.: Selective adsorption resonances: quantum and stochastic approaches. Phys. Rep. 451, 37–154 (2007)

    Article  ADS  Google Scholar 

  62. Sanz, A.S., Miret-Artés, S.: Aspects of nonlocality from a quantum trajectory perspective: a WKB approach to Bohmian mechanics. Chem. Phys. Lett. 445, 350–354 (2007)

    Article  ADS  Google Scholar 

  63. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  64. Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8, 143–182 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Takabayasi, T.: Remarks on the formulation of quantum mechanics with classical pictures and on relations between linear scalar fields and hydrodynamical fluids. Prog. Theor. Phys. 9, 187–222 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Sanz, A.S., Miret-Artés, S.: A trajectory-based understanding of quantum interference. J. Phys. A 41, 435303(1–23) (2008)

    Google Scholar 

  67. Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989)

    Article  ADS  Google Scholar 

  68. Shimizu, F., Shimizu, K., Takuma, H.: Double-slit interference with ultracold metastable neon atoms. Phys. Rev. A 46, R17–R20 (1992)

    Article  ADS  Google Scholar 

  69. Dimitrova, T.L., Weis, A.: The wave-particle duality of light: a demonstration experiment. Am. J. Phys. 76, 137–142 (2008)

    Article  ADS  Google Scholar 

  70. Dimitrova, T.L., Weis, A.: Lecture demonstrations of interference and quantum erasing with single photons. Phys. Scr. T135, 014003(1–4) (2009)

    Google Scholar 

  71. Dimitrova, T.L., Weis, A.: Single photon quantum erasing: a demonstration experiment. Eur. J. Phys. 31, 625–637 (2010)

    Article  Google Scholar 

  72. Landauer, R., Martin, Th.: Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217–228 (1994)

    Article  ADS  Google Scholar 

  73. Muga, J.G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1, 2nd edn. Springer Series Lecture Notes in Physics, vol. 734. Springer, Berlin (2008)

    Google Scholar 

  74. Muga, J.G., Ruschhaupt A., Campo, A. (eds.): Time in Quantum Mechanics, vol. 2. Springer Series Lecture Notes in Physics, vol. 789. Springer, Berlin (2009)

    Google Scholar 

  75. Guantes, R., Sanz, A.S., Margalef-Roig, J., Miret-Artés, S.: Atom-surface diffraction: a trajectory description. Surf. Sci. Rep. 53, 199–330 (2004)

    Article  ADS  Google Scholar 

  76. Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40, 322–326 (1926)

    ADS  Google Scholar 

  77. London, F.: Planck’s constant and low temperature transfer. Rev. Mod. Phys. 17, 310–320 (1945)

    Article  ADS  Google Scholar 

  78. Fetter, A.L., Svidzinsky, A.A.: Vortices in a trapped dilute Bose–Einstein condensate J. Phys.: Condens. Matter 13, R135–R194 (2001)

    Article  ADS  Google Scholar 

  79. McCullough, E.A., Wyatt, R.E.: Quantum dynamics of the collinear (H, \({\rm H}_2\)) reaction. J. Chem. Phys. 51, 1253–1254 (1969)

    Google Scholar 

  80. McCullough, E.A., Wyatt, R.E.: Dynamics of the collinear H + \({\rm H}_2\) reaction. I. Probability density and flux. J. Chem. Phys. 54, 3578–3591 (1971)

    Google Scholar 

  81. McCullough, E.A., Wyatt, R.E.: Dynamics of the collinear H + \({\rm H}_2\) reaction. II. Energy analysis. J. Chem. Phys. 54, 3592–3600 (1971)

    Google Scholar 

  82. Hirschfelder, J.O., Tang, K.T.: Quantum mechanical streamlines. III. Idealized reactive atom–diatomic molecule collision. J. Chem. Phys. 64, 760–785 (1976)

    Article  ADS  Google Scholar 

  83. Bader, R.F.W.: Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule. J. Chem. Phys. 73, 2871–2883 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  84. Gomes, J.A.N.F.: Delocalized magnetic currents in benzene. J. Chem. Phys. 78, 3133–3139 (1983)

    Article  ADS  Google Scholar 

  85. Gomes, J.A.N.F.: Topological elements of the magnetically induced orbital current densities. J. Chem. Phys. 78, 4585–4591 (1983)

    Article  ADS  Google Scholar 

  86. Lazzeretti, P.: Ring currents. Prog. Nuc. Mag. Res. Spect. 36, 1–88 (2000)

    Article  Google Scholar 

  87. Pelloni, S., Faglioni, F., Zanasi R., Lazzeretti, P.: Topology of magnetic-field-induced current-density field in diatropic monocyclic molecules. Phys. Rev. A 74, 012506(1–8) (2006)

    Google Scholar 

  88. Pelloni, S., Lazzeretti, P., Zanasi, R.: Spatial ring current model of the [2.2]paracyclophane molecule. J. Phys. Chem. A 111, 3110–3123 (2007)

    Article  Google Scholar 

  89. Pelloni, S., Lazzeretti, P., Zanasi, R.: Topological models of magnetic field induced current density field in small molecules. Theor. Chem. Acc. 123, 353–364 (2009)

    Article  Google Scholar 

  90. Pelloni, S., Lazzeretti, P.: Spatial ring current model for the prismane molecule. J. Phys. Chem. A 112, 5175–5186 (2008)

    Article  Google Scholar 

  91. Pelloni, S., Lazzeretti, P.: Topology of magnetic-field induced electron current density in the cubane molecule. J. Chem. Phys. 128, 194305(1–10) (2008)

    Google Scholar 

  92. Pelloni, S., Lazzeretti, P.: Ring current models for acetylene and ethylene molecules. Chem. Phys. 356, 153–163 (2009)

    Article  ADS  Google Scholar 

  93. García-Cuesta, I., Sánchez de Merás, A., Pelloni, S., Lazzeretti, P.: Understanding the ring current effects on magnetic shielding of hydrogen and carbon nuclei in naphthalene and anthracene. J. Comput. Chem. 30, 551–564 (2009)

    Article  Google Scholar 

  94. Landau, L.D., Lifschitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1959)

    Google Scholar 

  95. Bialynicki-Birula, I., Cieplak, M., Kaminski, J.: Theory of Quanta, Chap. 9. Oxford University Press, Oxford (1992)

    Google Scholar 

  96. Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A 133, 60–72 (1931)

    Article  ADS  Google Scholar 

  97. Riess, J.: Nodal structure, nodal flux fields, and flux quantization in stationary quantum states. Phys. Rev. D 2, 647–653 (1970)

    Article  ADS  Google Scholar 

  98. Hirschfelder, J.O., Goebel, C.J., Bruch, L.W.: Quantized vortices around wavefunction nodes. II. J. Chem. Phys. 61, 5456–5459 (1974)

    Article  ADS  Google Scholar 

  99. Wu, H., Sprung, D.W.L.: Inverse-square potential and the quantum vortex. Phys. Rev. A 49, 4305–4311 (1994)

    Article  ADS  Google Scholar 

  100. Bialynicki-Birula, I., Bialynicka-Birula, Z.: Magnetic monopoles in the hydrodynamic formulation of quantum mechanics. Phys. Rev. D 3, 2410–2412 (1971)

    Article  ADS  Google Scholar 

  101. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  102. Sanz, A.S., Borondo, F., Miret-Artés, S.: Quantum trajectories in atom-surface scattering with single adsorbates: the role of quantum vortices. J. Chem. Phys. 120, 8794–8806 (2004)

    Article  ADS  Google Scholar 

  103. Sanz, A.S., Borondo, F., Miret-Artés, S.: Role of quantum vortices in atomic scattering from single adsorbates. Phys. Rev. B 69, 115413(1–5) (2004)

    Google Scholar 

  104. Rosen, N.: The relation between classical and quantum mechanics. Am. J. Phys. 32, 597–600 (1964)

    Article  ADS  Google Scholar 

  105. Rosen, N.: Quantum particles and classical particles. Found. Phys. 16, 687–700 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  106. Ghosh, S.K., Deb, B.M.: Densities, density-functionals and electron fluids. Phys. Rep. 92, 1–44 (1982)

    Article  ADS  Google Scholar 

  107. Sanz, A.S., Miret-Artés, S.: A causal look into the quantum Talbot effect. J. Chem. Phys. 126, 234106(1–11) (2007)

    Google Scholar 

  108. Davidović, M., Arsenović, D., Bozić, M., Sanz, A.S., Miret-Artés, S.: Should particle trajectories comply with the transverse momentum distribution?. Eur. Phys. J. Special Topics 160, 95–104 (2008)

    Google Scholar 

  109. Yang, C.-D.: Quantum dynamics of hydrogen atom in complex space. Ann. Phys. (N.Y.) 319, 399–443 (2005)

    Google Scholar 

  110. Yang, C.-D.: Wave-particle duality in complex space. Ann. Phys. (N.Y.) 319, 444–470 (2005)

    Google Scholar 

  111. Yang, C.-D.: Solving quantum trajectories in Coulomb potential by quantum Hamilton–Jacobi theory. Int. J. Quantum Chem. 106, 1620–1639 (2006)

    Google Scholar 

  112. Yang, C.-D.: On modeling and visualizing single-electron spin motion. Chaos, Solitons & Fractals 30, 41–50 (2006)

    Article  ADS  Google Scholar 

  113. Yang, C.-D.: Modeling quantum harmonic oscillator in complex domain. Chaos, Solitons & Fractals 30, 342–362 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  114. Yang, C.-D.: Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom. Ann. Phys. 321, 2876–2926 (2006)

    Article  ADS  MATH  Google Scholar 

  115. Yang, C.-D.: The origin and proof of quantization axiom \({\mathbf p} \to \hat{\mathbf p} = -i\hbar\nabla\) in complex spacetime. Chaos, Solitons & Fractals 32, 274–283 (2007)

    Google Scholar 

  116. Yang, C.-D.: Complex tunneling dynamics. Chaos, Solitons & Fractals 32, 312–345 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  117. Yang, C.-D.: Quantum motion in complex space. Chaos, Solitons & Fractals 33, 1073–1092 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  118. Fürth, R.: Über Einige Beziehungen Zwischen Klassischer Statistik und Quantenmechanick. Z. Phys. 81, 143–162 (1993)

    Google Scholar 

  119. Comisar, G.G.: Brownian motion of nonrelativistic quantum mechanics. Phys. Rev. 138, B1332–B1337 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  120. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations.. Phys. Rev. 96, 208–216 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  121. Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 172, 93–122 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  122. John, M.V.: Modified de Broglie–Bohm approach to quantum mechanics. Found. Phys. Lett. 15, 329–343 (2002)

    Article  MathSciNet  Google Scholar 

  123. John, M.V.: Probability and complex quantum trajectories. Ann. Phys. (N.Y.) 324, 220–231 (2010)

    Article  ADS  Google Scholar 

  124. Sanz, A.S., Miret–Artés, S.: Interplay of causticity and vorticality within the complex quantum Hamilton–Jacobi formalism. Chem. Phys. Lett. 458, 239–243 (2008)

    Article  ADS  Google Scholar 

  125. Pauli, W.: Die allgemeine Prinzipien der Wellenmechanick. In: Geiger, H. , Scheel, K. (eds) Handbuch der Physik, vol. 24, part 1, 2nd edn. Springer-Verlag, Berlin (1933)

    Google Scholar 

  126. Gottfried, K.: Quantum Mechanics. W.A. Benjamin, New York (1966)

    Google Scholar 

  127. Floyd, E.R.: Bohr-Sommerfeld quantization with the effective action variable. Phys. Rev. D 25, 1547–1551 (1982)

    Article  ADS  Google Scholar 

  128. Floyd, E.R.: Modified potential and Bohm’s quantum-mechanical potential. Phys. Rev. D 26, 1339–1347 (1982)

    Article  ADS  Google Scholar 

  129. Floyd, E.R.: Arbitrary initial conditions of nonlocal hidden-variables. Phys. Rev. D 29, 1842–1844 (1984)

    Article  ADS  Google Scholar 

  130. Floyd, E.R.: Closed-form solutions for the modified potential. Phys. Rev. D 34, 3246–3249 (1986)

    Article  ADS  Google Scholar 

  131. Floyd, E.R.: Where and why the generalized Hamilton–Jacobi representation describes microstates of the Schrödinger wave function. Found. Phys. Lett. 9, 489–497 (1996)

    Article  MathSciNet  Google Scholar 

  132. Floyd, E.R.: Reflection time and the Goos–Hänchen effect for reflection by a semi-infinite rectangular barrier. Found. Phys. Lett. 13, 235–251 (2000)

    Google Scholar 

  133. Floyd, E.R.: Interference, reduced action, and trajectories. Found. Phys. 37, 1386–1402 (2007)

    Google Scholar 

  134. Floyd, E.R.: Welcher Weg? A trajectory representation of a quantum Young’s diffraction experiment. Found. Phys. 37, 1403–1420 (2007)

    Google Scholar 

  135. Faraggi, A.E., Matone, M.: Quantum transformations. Phys. Lett. A 249, 180–190 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  136. Faraggi, A.E., Matone, M.: The equivalence principle of quantum mechanics: uniqueness theorem. Phys. Lett. B 437, 369–380 (1998)

    Article  ADS  Google Scholar 

  137. Faraggi, A.E., Matone, M.: Equivalence principle, Planck length and quantum Hamilton–Jacobi equation. Phys. Lett. B 445, 77–81 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  138. Faraggi, A.E., Matone, M.: Equivalence principle: tunneling, quantized spectra and trajectories from the quantum HJ equation. Phys. Lett. B 445, 357–365 (1999)

    Article  ADS  Google Scholar 

  139. Faraggi, A.E., Matone, M.: Quantum mechanics from an equivalence principle. Phys. Lett. B 450, 34–40 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  140. Faraggi, A.E., Matone, M.: The equivalence postulate of quantum mechanics. Int. J. Mod. Phys. A 15, 1869–2017 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  141. Barker-Jarvis, J., Kabos, P.: Modified de Broglie approach applied to the Schrödinger and Klein–Gordon equation. Phys. Rev. A 68, 042110(1–8) (2003)

    Google Scholar 

  142. Chou, C.-C., Sanz, A.S., Miret-Artés S., Wyatt, R.E.: Hydrodynamic view of wave-packet interference: quantum caves. Phys. Rev. Lett. 102, 250401(1–4) (2009)

    Google Scholar 

  143. Chou, C.-C., Sanz, A.S., Miret-Artés, S., Wyatt, R.E.: Quantum interference within the complex quantum Hamilton–Jacobi formalism. Ann. Phys. (N.Y.) 325, 2193–2211 (2010)

    Google Scholar 

  144. Leacock, R.A., Padgett, M.J.: Hamilton–Jacobi theory and the quantum action variable. Phys. Rev. Lett. 50, 3–6 (1983)

    Google Scholar 

  145. Leacock, R.A., Padgett, M.J.: Hamilton–Jacobi/action-angle quantum mechanics. Phys. Rev. D 28, 2491–2502 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  146. Tannor, D.J.: Introduction to Quantum Mechanics: A Time Dependent Perspective. University Science Press, Sausalito (2006)

    Google Scholar 

  147. Boiron, M., Lombardi, M.: Complex trajectory method in semiclassical of wave packets. J. Chem. Phys. 108, 3431–3444 (1998)

    Article  ADS  Google Scholar 

  148. Goldfarb, Y., Degani, I., Tannor, D.J.: Bohmian mechanics with complex action: a new trajectory formulation of quantum mechanics. J. Chem. Phys. 125, 231103(1–4) (2006)

    Google Scholar 

  149. Sanz, A.S., Miret-Artés, S.: Comment on “Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics” [J. Chem. Phys. 125, 231103 (2006)]. J. Chem. Phys. 127, 197101(1–3) (2007)

    Google Scholar 

  150. Goldfarb, Y., Degani, I., Tannor, D.J.: Response to “Comment on ‘Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics’ ” [J. Chem. Phys. 127, 197101 (2007)]. J. Chem. Phys. 127, 197102(1–3) (2007)

    Google Scholar 

  151. Goldfarb, Y., Schiff, J., Tannor, D.J.: Unified derivation of Bohmian methods and the incorporation of interference effects. J. Phys. Chem. A 111, 10416–10421 (2007)

    Google Scholar 

  152. Goldfarb, Y., Degani, I., Tannor, D.J.: Semiclassical approximation with zero velocity trajectories. Chem. Phys. 338, 106–112 (2007)

    Article  ADS  Google Scholar 

  153. Goldfarb, Y., Tannor, D.J.: Interference in Bohmian mechanics with complex action. J. Chem. Phys. 127, 161101(1–4) (2007)

    Google Scholar 

  154. Chou, C.-C., Wyatt, R.E.: Computational method for the quantum Hamilton–Jacobi equation: bound states in one dimension. J. Chem. Phys. 125, 174103(1–10) (2006)

    Google Scholar 

  155. Chou, C.-C., Wyatt, R.E.: Computational method for the quantum Hamilton–Jacobi equation: one-dimensional scattering problems. Phys. Rev. E 74, 066702(1–9) (2006)

    Google Scholar 

  156. Chou, C.-C., Wyatt, R.E.: Quantum trajectories in complex space. Phys. Rev. A 76, 012115(1–14) (2007)

    Google Scholar 

  157. Rowland, B.A., Wyatt, R.E.: Analysis of barrier scattering with real and complex quantum trajectories. J. Phys. Chem. A 111, 10234–10250 (2007)

    Article  Google Scholar 

  158. Wyatt, R.E., Rowland, B.A.: Quantum trajectories in complex space: multidimensional barrier transmission. J. Chem. Phys. 127, 044103(1–12) (2007)

    Google Scholar 

  159. David, J.K., Wyatt, R.E.: Barrier scattering with complex-valued quantum trajectories: taxonomy and analysis of isochrones. J. Chem. Phys. 128, 094102(1–9) (2008)

    Google Scholar 

  160. Bohr, N.: Über die Anwendung der Quantentheorie auf den Atombau I. Die Grundpostulate der Quantentheorie. Z. Physik 13, 117–165 (1923)

    Article  ADS  Google Scholar 

  161. Liboff, R.L.: The correspondence principle revisited. Phys. Today 37, 50–55 (1984)

    Article  Google Scholar 

  162. Berry, M.V.: Quantum chaology, not quantum chaos. Phys. Scr. 40, 335–336 (1989)

    Article  ADS  MATH  Google Scholar 

  163. Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455–457 (1927)

    Article  ADS  Google Scholar 

  164. Elmore, W.C., Heald, M.A.: Physics of Waves. Dover Publications, New York (1985)

    Google Scholar 

  165. Schrödinger, E.: Discussion of probability relation between separated systems. Proc. Cambridge Phil. Soc. 31, 555–563 (1935)

    Article  ADS  Google Scholar 

  166. Schrödinger, E.: Probability relations between separated systems. Proc. Camb. Phil. Soc. 32, 446–452 (1936)

    Article  ADS  Google Scholar 

  167. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergiemko, V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Google Scholar 

  168. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  169. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)

    Google Scholar 

  170. Giulini, D., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D.: Decoherence and the Appearence of a Classical World in Quantum Theory. Springer, Berlin (1996)

    Google Scholar 

  171. Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243 (1985)

    Article  ADS  Google Scholar 

  172. Dewdney, C.: Nonlocally corelated trajectories in 2-particle quantum mechanics. Found. Phys. 18, 867–886 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  173. Lam, M.M., Dewdney, C.: Locality and nonlocality in correlated two-particle interferometry. Phys. Lett. A 150, 127–135 (1990)

    Article  ADS  Google Scholar 

  174. Guay, E., Marchildon, L.: Two-particle interference in standard and Bohmian quantum mechanics. J. Phys. A 36, 5617–5624 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  175. Na, K., Wyatt, R.E.: Quantum hydrodynamic analysis of decoherence: quantum trajectories and stress tensor. Phys. Lett. A 306, 97–103 (2002)

    Article  ADS  MATH  Google Scholar 

  176. Na, K., Wyatt, R.E.: Quantum hydrodynamic analysis of decoherence. Phys. Scr. 67, 169–180 (2003)

    Article  ADS  MATH  Google Scholar 

  177. Sanz, A.S., Borondo, F.: A quantum trajectory description of decoherence. Eur. Phys. J. D 44, 319–326 (2007)

    Article  ADS  Google Scholar 

  178. Sanz, A.S., Borondo, F.: Contextuality, decoherence and quantum trajectories. Chem. Phys. Lett. 478, 301–306 (2009)

    Article  ADS  Google Scholar 

  179. Oriols, X.: Quantum-trajectory approach to time-dependent transport in mesoscopic system with electron–electron interactions. Phys. Rev. Lett. 98, 066803(1–4) (2007)

    Google Scholar 

  180. Billing, G.D.: Classical path method in inelastic and reactive scattering. Int. Rev. Phys. Chem. 13, 309–335 (1994)

    Article  Google Scholar 

  181. Tully, J.C.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990)

    Article  ADS  Google Scholar 

  182. Tully, J.C.: Nonadiabatic molecular dynamics. Int. J. Quantum Chem. 40(S25), 299–309 (1991)

    Article  Google Scholar 

  183. Prezhdo, O.V., Brooksby, C.: Quantum backreaction through the Bohmian particles. Phys. Rev. Lett. 86, 3215–3219 (2001)

    Article  ADS  Google Scholar 

  184. Sanz, A.S., Borondo, F., Bastiaans, M.: Loss of coherence in double-slit diffraction experiments. Phys. Rev. A. 71, 042103(1–7) (2005)

    Google Scholar 

  185. Razavy, M.: Classical and Quantum Dissipative Systems. Imperial College Press, London (2005)

    MATH  Google Scholar 

  186. Kostin, M.D.: On the Schrödinger–Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972)

    Google Scholar 

  187. Kostin, M.D.: Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 12, 145–151 (1975)

    Google Scholar 

  188. Burghardt, I., Möller, K.B.: Quantum dynamics for dissipative systems: a hydrodynamic perspective. J. Chem. Phys. 117, 7409–7425 (2002)

    Google Scholar 

  189. Trahan, C.J., Wyatt, R.E.: Evolution of classical and quantum phase-space distributions: a new trajectory approach for phase–space hydrodynamics. J. Chem. Phys. 119, 7017–7029 (2003)

    Google Scholar 

  190. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  191. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  192. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  193. Vink, J.C.: Quantum mechanics in terms of discrete beables. Phys. Rev. A 48, 1808–1818 (1993)

    Article  ADS  Google Scholar 

  194. Kershaw, D.: Theory of hidden variables. Phys. Rev. 136, B1850–B1856 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  195. Nelson, E.: Derivation of the Shrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  ADS  Google Scholar 

  196. Olavo, L.S.F.: Foundations of quantum mechanics: connection with stochastic processes. Phys. Rev. A 61, 052109(1–14) (2000)

    Google Scholar 

  197. Grabert, H., Hänggi, P., Talkner, P.: Is quantum mechanics equivalent to a classical stochastic process?. Phys. Rev. A 19, 2440–2445 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  198. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  199. Santos, L.F., Escobar, C.O.: Enhanced diffusion and the continuous spontaneous localization model. Phys. Rev. A 60, 2712–2715 (1999)

    Article  ADS  Google Scholar 

  200. Bassi, A., Ferialdi, L.: Non-Markovian quantum trajectories: an exact result. Phys. Rev. Lett. 103, 050403(1–4) (2009)

    Google Scholar 

  201. Lorenzen, F., de Ponte, M.A., Moussa, M.H.Y.: Extending Bell’s beables to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. Phys. Rev. A 80, 032101(1–8) (2009)

    Google Scholar 

  202. Englert, B.-G., Scully, M.O., Süssmann, G., Walther, H.: Surrealistic Bohm trajectories. Z. Naturforsch. A 47, 1175–1186 (1992)

    Google Scholar 

  203. Dürr, D., Fusseder, F., Goldstein, S., Zhangí, N.: Comment on “Surrealistic Bohm trajectories”. Z. Naturforsch. A 48, 1261–1262 (1993)

    Google Scholar 

  204. Englert, B.-G., Scully, M.O., Süssmann, G., Walther, H.: Reply to Comment on “Surrealistic Bohm trajectories”. Z. Naturforsch. A 48, 1263–1264 (1993)

    Google Scholar 

  205. Becker, L.: On the supposed surrealism of Bohmian mechanics. Z. Naturforsch. A 52, 533–538 (1997)

    Google Scholar 

  206. Scully, M.O.: Do Bohm trajectories always provide a trustworthy physical picture of particle motion? Phys. Scr. T76, 41–46 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  207. Hiley, B.J., Callaghan, R.E.: Delayed-choice experiments and the Bohm approach. Phys. Scr. 74, 336–348 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  208. Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011)

    Article  ADS  Google Scholar 

  209. Wiseman, H.M.: Grounding Bohmian mechanics in weak values and bayesianism. New. J. Phys. 9, 165(1–12) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanz, Á.S., Miret-Artés, S. (2012). Quantum Mechanics with Trajectories. In: A Trajectory Description of Quantum Processes. I. Fundamentals. Lecture Notes in Physics, vol 850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18092-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18092-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18091-0

  • Online ISBN: 978-3-642-18092-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics