Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 850))

  • 1637 Accesses

Abstract

Although the concept of wave appears in the description of many different physical processes, it acquires a special relevance in the case of matter and radiation. The use of trajectories (or rays) and waves to describe both matter and radiation has led to a strongly intertwined historical development of both quantum mechanics and electromagnetism. In this sense, a brief overview of the wave formulation of electromagnetism (with particular emphasis on optics) is worth being presented here, for it will provide an alternative viewpoint to think quantum mechanics and, at the same time, the background necessary to understand later on the concept of photon trajectory. In this sense, this chapter will settle some general concepts which will be applied in the description of quantum phenomena by means of Bohmian mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terms wave optics, physical optics and undulatory optics are usually considered in the literature to denote the same: the part of optics described by the wave equation derived from Maxwell’s equations of electromagnetism. Throughout this monograph, the first term will be used preferably, since it allows a more direct conceptual connection with Schrödinger’s wave mechanics or quantum mechanics.

  2. 2.

    Of course, other solutions can also be devised. It is sufficient to assume a particular form (initial condition) for E and H satisfying the corresponding boundaries at a given time and then solving (4.2), which will give us the time-evolution of these fields.

  3. 3.

    In quantum mechanics, this is somehow similar to what happens within Feynman’s path-integral formulation [21] (see Sect. 3.4). In this case, the geometric optics ray is substituted by a classical (stationary) trajectory and the secondary wavelets are replaced by imaginary exponential functions, with their argument being the classical action evaluated along the corresponding varied (with respect to the classical trajectory) paths. As one approaches the classical limit, mainly contributions in a neighborhood of the classical trajectories are relevant.

  4. 4.

    In particular, the problem of finding a wave function for the photon is an issue which has received much attention in the literature [5773]. It is remarkable that recently it has been shown experimentally [74] that such a wave function can be directly measured, which might open a very fruitful and interesting debate of unexpected implications.

References

  1. Elmore, W.C., Heald, M.A.: Physics of Waves. Dover, New York (1969)

    Google Scholar 

  2. Main, I.G.: Vibrations and Waves in Physics, 3rd edn. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  3. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vol. 1. McGraw-Hill, New York (1953)

    Google Scholar 

  4. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vol. 2. McGraw-Hill, New York (1953)

    Google Scholar 

  5. Huygens, C.: Treatise on Light. Dover, New York (1962)

    Google Scholar 

  6. Newton, I.: Opticks. Dover, New York (1952)

    Google Scholar 

  7. Home, R.W.: Leonhard Euler’s “anti-Newtonian” theory of light. Ann. Sci. 45, 521–533 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eliasmith, C., Thagard, P.: Waves, particles and explanatory coherence. Br. J. Phil. Sci. 48, 1–19 (1997)

    Article  Google Scholar 

  9. Iliffe, R.: Philosophy of science, in The Cambridge History of Science. In: Porter, R. (ed) Eighteenth-Century Science, vol. 4, pp. 267–284. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  10. Hooke, R.: Micrographia or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon, 1st edn. J. Martyn and J. Allestry, London, (1665). Preprinted by Dover Publications (Dover Phoenix Editions, New York, 2003)

    Google Scholar 

  11. Bartholin, E.: Experimenta crystalli islandici disdiaclastici quibus mira et infolita refractio detegitur. Daniel Pauli, Copenhagen (1669). Translated into English by Archibald, T.: Experiments on birefringent Icelandic crystal through which is detected a remarkable and unique refraction. Danish National Library of Science and Medicine, Copenhagen (1991); Acta Historica Scientiarium Naturalium et Medicinalium 40 (1991)

    Google Scholar 

  12. Bartholin, E.: An account of sundry experiments made and communicated by That Learn’d mathematician, Dr Erasmus Bartholin, upon a Chrystal-like body, sent to him out of Island. Phis. Trans. Roy. Soc. Lond. 5, 2039–2048 (1670)

    Article  Google Scholar 

  13. Fresnel, A.: \(\OE \hbox{uvres}\) Complètes. Imprimerie Impèriale, Paris, t.1, pp. 254–255 (1866). Translated into English by Crew, H.: The Wave Theory of Light: Memoirs o Huygens, Young and Fresnel. American Book Company, New York (1900)

    Google Scholar 

  14. Hecht, E.: Optics. Addison-Wesley, Reading (1987)

    Google Scholar 

  15. Harvey, J.E., Forgham, J.L.: The spot of Arago: new relevance for an old phenomenon. Am. J. Phys. 52, 243 (1984)

    Article  ADS  Google Scholar 

  16. Born, M., Wolf, E.: Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  17. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  18. Guenther, R.: Modern Optics. Wiley, New York (1990)

    Google Scholar 

  19. Daniels, J.M.: An explanation of a difficulty with Huygens’ secondary wavelets. Can. J. Phys. 74, 236–239 (1996)

    Article  ADS  Google Scholar 

  20. Haber-Schaim, U., Cross, J.B., Dodge, J.H., Walter, J.A.: PSSC Physics, 3rd edn. D. C. Heath, Lexington, p. 122 (1971)

    Google Scholar 

  21. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  22. Arfken, G.: Mathematical Methods for Physicists, 3rd edn. Academic Press, San Diego (1985)

    Google Scholar 

  23. Sharma, K.K.: Optics. Principles and Applications. Academic Press, Amsterdam (2006)

    Google Scholar 

  24. Balanis, C.A.: Antenna Theory. Analysis and Design, 2nd edn. Wiley, New York (1997)

    Google Scholar 

  25. Colladon, J.-D.: Sur les réflexions d’un rayon de lumière à à l’interieur d’une veine liquide parabolique. Comptes Rendus 15, 800–802 (1842)

    Google Scholar 

  26. Babinet, J.: Note sur la transmission de la lumière par des canaux sinueux. Comptes Rendus 15, 802–802 (1842)

    Google Scholar 

  27. Tyndall, J.: On some phenomena connected with the motions of liquids. Proc. R. Inst. G. B. 1, 446–448 (1854)

    Google Scholar 

  28. Tyndall, J.: Notes of a Course of Nine Lectures on Light. The Royal Institution of Great Britain, London, pp. 20–22 (1870)

    Google Scholar 

  29. Thomson, J.J.: Notes on Recent Researches in Electricity and Magnetism. Clarendon Press, Oxford (1893)

    Google Scholar 

  30. Lodge, O.J.: The Work of Hertz and Some of His Succesors, London (1894)

    Google Scholar 

  31. Lord Rayleigh, J.W.S.: On the passage of electric waves through tubes or the vibrations of dielectric cylinders. Phil. Mag. 43, 125–132 (1897)

    Google Scholar 

  32. de Fornel, F.: Evanescent waves: from Newtonian mechanics to atomic optics. Springer, Berlin (2001)

    Google Scholar 

  33. Goos, F., Hänchen, H.: Ein Neuer und Fundamentaler Versuch zur Totalreflexion. Ann. Phys. (Leipzig) 436, 333–346 (1947)

    Article  ADS  Google Scholar 

  34. Goos, F., Lindberg-Hänchen, H.: Neumessung des Strahlversetzungeffktes bei Totalreflexion. Ann. Phys. (Leipzig) 436, 251–252 (1949)

    Google Scholar 

  35. Lotsch, H.K.V.: Beam displacement at total reflection: the Goos–Hänchen effect (series of papers). Optik 32, 116–137, 189–204 (1970)

    Google Scholar 

  36. Lotsch, H.K.V.: Beam displacement at total reflection: the Goos–Hänchen effect (series of papers). Optik 32, 299–319, 553–569 (1971)

    Google Scholar 

  37. Delgado, M., Delgado, E.: Evaluation of a total reflection set-up by an interface geometric model. Optik 113, 520–526 (2003)

    Google Scholar 

  38. Fedorov, F.I.: Theory of total reflection. Dokl. Akad. Nauk. SSR 105, 465–468 (1955)

    MATH  Google Scholar 

  39. Imbert, C.: L’effet inertial de spin du photon: Théorie et preuve expérimentale. Nouv. Rev. Opt. Appl. 3, 199–208 (1972)

    Article  ADS  Google Scholar 

  40. Pillon, F., Gilles, H., Girard, S.: Experimental observation of the Imbert–Fedorov transverse displacement after a single total reflection. App. Opt. 43, 1863–1869 (2004)

    Article  ADS  Google Scholar 

  41. Hartman, T.E.: Tunneling of a wave packet. J. Appl. Phys. 33, 3427–3433 (1962)

    Article  ADS  Google Scholar 

  42. Martínez, J.C., Polatdemir, E.: Origin of the Hartman effect. Phys. Lett. A 351, 31–36 (2006)

    Article  ADS  Google Scholar 

  43. Nimtz, G., Stahlhofen, A.A.: Macroscopic violation of special relativity (2007). arXiv:0708.0681

    Google Scholar 

  44. Winful, H.: Tunneling time, the Hartman effect and superluminality: a proposed resolution of an old paradox. Phys. Rep. 436, 1–69 (2006)

    Article  ADS  Google Scholar 

  45. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  46. Leonhardt, U., Piwnicki, P.: Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822–825 (2000)

    Article  ADS  Google Scholar 

  47. Unruh, W.G., Schützhold, R.: On slow light as a black hole analogue. Phys. Rev. D 68, 024008(1–14) (2003)

    Google Scholar 

  48. Philbin, T.G., Kuklewicz, Ch., Robertson, S., Hill, S., König, F., Leonhardt, U.: Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008)

    Article  ADS  Google Scholar 

  49. Narimanov, E.E., Kildishev, A.V.: Optical black hole: broadband omnidirectional light absorber. Appl. Phys. Lett. 95:41106(1–3) (2009)

    Google Scholar 

  50. Cheng, Q., Cui, T.J., Jiang, W.X., Cai, B.G.: An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 12, 063006(1–10) (2010)

    Google Scholar 

  51. Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  Google Scholar 

  52. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926)

    ADS  Google Scholar 

  53. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables I. Phys. Rev. 85, 166–179 (1952)

    Google Scholar 

  54. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables II. Phys. Rev. 85, 180–193 (1952)

    Google Scholar 

  55. Takabayashi, T.: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8, 143–182 (1952)

    Article  ADS  Google Scholar 

  56. Takabayashi, T.: Remarks on the formulation of quantum mechanics with classical pictures and on relations between linear scalar fields and hydrodynamical fluids. Prog. Theor. Phys. 9, 187–222 (1953)

    Article  ADS  Google Scholar 

  57. Bialynicki-Birula, I.: On the wave function of the phonon. Acta Phys. Pol. A 86, 97–107 (1994)

    Google Scholar 

  58. Bialynicki-Birula, I.: The photon wave function. In: Eberly, J.H., Mandel, L., Wolf, E. (eds.) Coherence and Quantum Optics, vol. 7. Plenum Press, New York, pp. 313–322 (1996)

    Google Scholar 

  59. Bialynicki-Birula, I.: Photon wave function. Prog. Opt. 36, 245–294 (1996)

    Article  Google Scholar 

  60. Bialynicki-Birula, I.: Hydrodynamics of relativistic probability flows. In: Infeld, E., Zelazny, R., Galkowski, A. (eds.) Nonlinear Dynamics, Chaotic and Complex Systems. Cambridge University Press, Cambridge, pp. 64–71 (1997)

    Google Scholar 

  61. Sipe, J.E.: Photon wave functions. Phys. Rev. A 52, 1875–1883 (1995)

    Article  ADS  Google Scholar 

  62. Landau, L., Peierls, R.: Quantenelektrodynamik im Konfigurationsraum. Z. Phys. 62, 188–200 (1930)

    Article  ADS  Google Scholar 

  63. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  64. Cook, R.J.: Photon dynamics. Phys. Rev. A 25, 2164–2167 (1982)

    Article  ADS  Google Scholar 

  65. Cook, R.J.: Lorents covariance of photon dynamics. Phys. Rev. A 26, 2754–2760 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  66. Inagaki, T.: Quantum-mechanical approach to a free photon. Phys. Rev. A 49, 2839–2843 (1994)

    Article  ADS  Google Scholar 

  67. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  68. Kobe, D.H.: A relativistic Schrödinger-like equation for a photon and its second quantization. Found Phys. 29, 1203–1231 (1999)

    Article  MathSciNet  Google Scholar 

  69. Berry, M.V.: Riemann–Silberstein vortices for paraxial waves. J. Opt. A 6, S175–S177 (2004)

    Article  ADS  Google Scholar 

  70. Holland, P.R.: Hydrodynamic construction of the electromagnetic field. Proc. R. Soc. A 461, 3659–3679 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. Raymer, M.G., Smith, B.J.: The Maxwell wave function of the photon. Proc. SPIE 5866, 293–297 (2005)

    Article  ADS  Google Scholar 

  72. Smith, B.J., Raymer, M.G.: Photon wave functions: wave-packet quantization of light and coherence theory. New J. Phys. 9, 414(1–37) (2007)

    Google Scholar 

  73. Zhi-Yong, W., Cai-Dong, X., Ole, K.: The first-quantized theory of photons. Chin. Phys. Lett. 24, 418–420 (2007)

    Article  ADS  Google Scholar 

  74. Lundeen, J.S., Sutherland, B., Patel, A., Stewart, C., Bamber, C.: Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011)

    Article  Google Scholar 

  75. Silberstein, L.: Elektromagnetische Grundgleichungen in bivectorieller Behandlung. Ann. Phys. (Leipzig) 22, 579–586 (1907)

    ADS  MATH  Google Scholar 

  76. Silberstein, L.: Nachtrag zur Abhandlung über “Elektromagnetische Grundgleichungen in bivectorieller Behandlung”. Ann. Phys. (Leipzig) 24, 783–784 (1907)

    ADS  Google Scholar 

  77. Bateman, H.: The Mathematical Analysis of Electrical and Optical Wave Motion on the Basis of Maxwell’s Equations. Dover, New York (1955)

    MATH  Google Scholar 

  78. Borisov, A.G., Shabanov, S.V.: Lanczos pseudospectral method for initial-value problems in electrodynamics and its applications to ionic crystal gratings. J. Comp. Phys. 209, 643–664 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. Borisov, A.G., García de Abajo, F.J., Shabanov, S.V.: Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials. Phys. Rev. B 71:075408(1–7) (2005)

    Google Scholar 

  80. Borisov, A.G., Shabanov, S.V.: Wave packet propagation by the Faber polynomial approximation in electrodynamics of passive media. J. Comp. Phys. 216, 391–402 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. Pant, D.K., Coalson, R.D., Hernández, M.I., Campos-Martínez, J.: Optimal control theory for the design of optical waveguides. J. Lightwave Technol. 16, 292–300 (1998)

    Article  ADS  Google Scholar 

  82. Pant, D.K., Coalson, R.D., Hernández, M.I., Campos-Martínez, J.: Optimal control theory for optical waveguides design: application to Y-branch structures. Appl. Opt. 38, 3917–3923 (1999)

    Article  ADS  Google Scholar 

  83. Campos-Martínez, J., Coalson, R.D.: The wide-angle equation and its solution through the short-time iterative Lanczos method. Appl. Opt. 42, 1732–1742 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanz, Á.S., Miret-Artés, S. (2012). Optics and Quantum Mechanics. In: A Trajectory Description of Quantum Processes. I. Fundamentals. Lecture Notes in Physics, vol 850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18092-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18092-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18091-0

  • Online ISBN: 978-3-642-18092-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics