Skip to main content

The Interstitium and Lymphatics have an Important Role in Edema Generation during Sepsis

  • Chapter
Book cover Annual Update in Intensive Care and Emergency Medicine 2011

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2011 ((AUICEM,volume 1))

  • 2121 Accesses

Abstract

Increased fluid filtration is one of the hallmarks of inflammation. During systemic inflammatory response syndrome (SIRS) and sepsis, excessive fluid extravasation takes place. Restoring and maintaining an adequate intravascular fluid volume is, therefore, one of the most important goals in the clinical situation. There are two reasons for this: First, the increased fluid filtration results in edema, which may lead to organ dysfunction or failure. Importantly, the increased tissue water and edema may impede normal lung function. Furthermore, the increased amount of tissue fluid will lead to increased diffusion distance for nutrients and waste products. Second, the increased fluid filtration is a central element of septic pathophysiology, and may, combined with increased vasodilatation, lead to hypovolemic shock. Based on the prominent role of fluid filtration, it is no surprise that much of the discussion on sepsis pathophysiology is focused on the capillary wall. Here we will review recent data showing that the interstitium or the extracellular matrix outside the blood vessels has a central pathogenetic role in fluid extravasation and edema generation in sepsis. We will also discuss data on the potential role of the lymphatics in this context since they are crucial for maintaining a normal fluid balance in the tissues, and even more so for returning extravasated plasma proteins to the circulation. In doing so, we will briefly address normal transcapillary exchange and edema prevention while maintaining our focus on the extravascular compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19: 312–326

    PubMed  CAS  Google Scholar 

  2. Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 87: 198–210

    Article  PubMed  CAS  Google Scholar 

  3. Aukland K, Reed RK (1993) Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73: 1–78

    PubMed  CAS  Google Scholar 

  4. Wiig H, Rubin K, Reed RK (2003) New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaesthesiol Scand 47: 111–121

    Article  PubMed  CAS  Google Scholar 

  5. Pappenheimer JR, Soto-Rivera A (1948) Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am J Physiol 152: 471–491

    PubMed  CAS  Google Scholar 

  6. Rivers EP, Coba V, Whitmill M (2008) Early goal-directed therapy in severe sepsis and septic shock: a contemporary review of the literature. Curr Opin Anaesthesiol 21: 128–140

    Article  PubMed  Google Scholar 

  7. Levick JR (2003) An introduction to Cardiovascular Physiology, 4th edn. Arnold, London

    Google Scholar 

  8. Reed RK, Liden A, Rubin K (2010) Edema and fluid dynamics in connective tissue remodelling. J Mol Cell Cardiol 48: 518–523

    Article  PubMed  CAS  Google Scholar 

  9. Reed RK, Rubin K (2010) Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res 87: 211–217

    Article  PubMed  CAS  Google Scholar 

  10. Guyton AC, Armstrong GG, Crowell JW (1960) Negative pressure in the interstitial spaces. Physiologist 3: 70 (abst)

    Google Scholar 

  11. Lund T, Wiig H, Reed RK, et al (1987) A ‘new’ mechanism for oedema generation: strongly negative interstitial fluid pressure causes rapid fluid flow into thermally injured skin. Acta Physiol Scand 129: 433–435

    PubMed  CAS  Google Scholar 

  12. Popova SN, Rodriguez-S’anchez B, Lid’en A, et al (2004) The mesenchymal alpha11beta1 integrin attenuates PDGF-BB-stimulated chemotaxis of embryonic fibroblasts on collagens. Dev Biol 270: 427–442

    Article  PubMed  CAS  Google Scholar 

  13. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687

    Article  PubMed  CAS  Google Scholar 

  14. Carman CV, Springer TA (2003) Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 15: 547–556

    Article  PubMed  CAS  Google Scholar 

  15. Bazzoni G, Hemler ME (1998) Are changes in integrin affinity and conformation overemphasized? Trends Biochem Sci 23: 30–34

    Article  PubMed  CAS  Google Scholar 

  16. Jokinen J, Dadu E, Nykvist P, et al (2004) Integrin-mediated cell adhesion to type I collagen fibrils. J Biol Chem 279: 31956–31963

    Article  PubMed  CAS  Google Scholar 

  17. Gardner H, Kreidberg J, Koteliansky V, et al (1996) Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev Biol 175: 301–313

    Article  PubMed  CAS  Google Scholar 

  18. Chen J, Diacovo TG, Grenache DG, et al (2002) The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161: 337–344

    Article  PubMed  CAS  Google Scholar 

  19. Holtkotter O, Nieswandt B, Smyth N, et al (2002) Integrin alpha 2-deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen. J Biol Chem 277: 10789–10794

    Article  PubMed  CAS  Google Scholar 

  20. Popova SN, Lundgren-Akerlund E, Wiig H, et al (2007) Physiology and pathology of collagen receptors. Acta Physiol (Oxf) 190: 179–187

    Article  CAS  Google Scholar 

  21. Grundstrom G, Mosher DF, Sakai T, et al (2003) Integrin alphavbeta3 mediates plateletderived growth factor-BB-stimulated collagen gel contraction in cells expressing signaling deficient integrin alpha2beta1. Exp Cell Res 291: 463–473

    Article  PubMed  CAS  Google Scholar 

  22. Brooks PC, Clark RA, and Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264: 569–571

    Article  PubMed  CAS  Google Scholar 

  23. Robinson SD, Reynolds LE, Wyder L, et al (2004) Beta3-integrin regulates vascular endothelial growth factor-A-dependent permeability. Arterioscler Thromb Vasc Biol 24: 2108–2114

    Article  PubMed  CAS  Google Scholar 

  24. Gullberg D, Tingstrom A, Thuresson AC, et al (1990) Beta 1 integrin-mediated collagen gel contraction is stimulated by PDGF. Exp Cell Res 186: 264–272

    Article  PubMed  CAS  Google Scholar 

  25. Reed RK, Rubin K, Wiig H, et al (1992) Blockade of beta 1-integrins in skin causes edema through lowering of interstitial fluid pressure. Circ Res 71: 978–983

    PubMed  CAS  Google Scholar 

  26. Rodt SA, Ahlen K, Berg A, et al (1996) A novel physiological function for platelet-derived growth factor-BB in rat dermis. J Physiol 495(Pt 1): 193–200

    PubMed  CAS  Google Scholar 

  27. Barczyk MM, Olsen LH, da Franca P, et al (2009) A role for alpha11beta1 integrin in the human periodontal ligament. J Dent Res 88: 621–626

    Article  PubMed  CAS  Google Scholar 

  28. Svendsen OS, Barczyk MM, Popova SN, et al (2009) The pha11ta1 Integrin Has a Mechanistic Role in Control of Interstitial Fluid Pressure and Edema Formation in Inflammation. Arterioscler Thromb Vasc Biol 29: 1864–1870

    Article  PubMed  CAS  Google Scholar 

  29. Liden A, Berg A, Nedrebo T, et al (2006) Platelet-derived growth factor BB-mediated normalization of dermal interstitial fluid pressure after mast cell degranulation depends on beta3 but not beta1 integrins. Circ Res 98: 635–641

    Article  PubMed  CAS  Google Scholar 

  30. Liden A, van Wieringen T, Lannergard J, et al (2008) A secreted collagen-and fibronectin-binding streptococcal protein modulates cell-mediated collagen gel contraction and interstitial fluid pressure. J Biol Chem 283: 1234–1242

    Article  PubMed  CAS  Google Scholar 

  31. Nedrebo T, Karlsen TV, Salvesen GS, et al (2004) A novel function of insulin in rat dermis. J Physiol 559: 583–591

    Article  PubMed  CAS  Google Scholar 

  32. Svendsen OS, Liden A, Nedrebo T, et al (2008) Integrin alphavbeta3 acts downstream of insulin in normalization of interstitial fluid pressure in sepsis and in cell-mediated collagen gel contraction. Am J Physiol Heart Circ Physiol 295: H555–560

    Article  PubMed  CAS  Google Scholar 

  33. Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–1367

    Article  PubMed  Google Scholar 

  34. Van den Berghe G, Wouters PJ, Bouillon R, et al (2003) Outcome benefit of intensive insulin therapy in the critically ill: Insulin dose versus glycemic control. Crit Care Med 31: 359–366

    Article  PubMed  Google Scholar 

  35. Das UN (2001) Is insulin an antiinflammatory molecule? Nutrition 17: 409–413

    Article  PubMed  CAS  Google Scholar 

  36. Van den Berghe G, Wilmer A, Hermans G, et al (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354: 449–461

    Article  PubMed  Google Scholar 

  37. Finfer S, Chittock DR, Su SY, et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360: 1283–1297

    Article  PubMed  Google Scholar 

  38. Preiser JC, Devos P, Ruiz-Santana S, et al (2009) A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med 35: 1738–1748

    Article  PubMed  CAS  Google Scholar 

  39. Serne EH, RG IJ, Gans RO, et al (2002) Direct evidence for insulin-induced capillary recruitment in skin of healthy subjects during physiological hyperinsulinemia. Diabetes 51: 1515–1522

    Article  PubMed  CAS  Google Scholar 

  40. Granger DN, Mortillaro NA, Kvietys PR, et al (1980) Role of the interstitial matrix during intestinal volume absorption. Am J Physiol Gastrointest Liver Physiol 238: G183–189

    CAS  Google Scholar 

  41. Baluk P, Yao LC, Feng J, et al (2009) TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest 119: 2954–2964

    PubMed  CAS  Google Scholar 

  42. Mounzer RH, Svendsen OS, Baluk P, et al (2010) Lymphotoxin alpha contributes to lymph-angiogenesis. Blood 116: 2173–2182

    Article  PubMed  CAS  Google Scholar 

  43. Groeneveld AB, Teule GJ, Bronsveld W, et al (1987) Increased systemic microvascular albumin flux in septic shock. Intensive Care Med 13: 140–142

    Article  PubMed  CAS  Google Scholar 

  44. Lattuada M, Hedenstierna G (2006) Abdominal lymph flow in an endotoxin sepsis model: influence of spontaneous breathing and mechanical ventilation. Crit Care Med 34:2792–2798

    Article  PubMed  Google Scholar 

  45. Elias RM, Johnston MG, Hayashi A, et al (1987) Decreased lymphatic pumping after intravenous endotoxin administration in sheep. Am J Physiol 253: H1349–1357

    PubMed  CAS  Google Scholar 

  46. Semaeva E, Tenstad O, Skavland J, et al (2010) Access to the spleen microenvironment through lymph shows local cytokine production, increased cell flux, and altered signaling of immune cells during lipopolysaccharide-induced acute inflammation. J Immunol 184: 4547–4556

    Article  PubMed  CAS  Google Scholar 

  47. Hedenstierna G, Lattuada M (2008) Lymphatics and lymph in acute lung injury. Curr Opin Crit Care 14: 31–36

    Article  PubMed  Google Scholar 

  48. Flynn A, Chokkalingam Mani B, Mather PJ (2010) Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev 15: 605–611

    Article  PubMed  Google Scholar 

  49. Li B, Silver I, Szalai JP, et al (1998) Pressure-volume relationships in sheep mesenteric lymphatic vessels in situ: response to hypovolemia. Microvasc Res 56: 127–138

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Svendsen, Ø.S., Reed, R.K., Wiig, H. (2011). The Interstitium and Lymphatics have an Important Role in Edema Generation during Sepsis. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2011. Annual Update in Intensive Care and Emergency Medicine 2011, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18081-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18081-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18080-4

  • Online ISBN: 978-3-642-18081-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics