Advertisement

Heuristische und probabilistische Betrachtungen

  • Paulo Ribenboim
Chapter
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Das Wort „heuristisch“ bedeutet: auf Erfahrungen beruhend oder mit Erfahrungen verbunden sein. Heuristische Ergebnisse entstehen aus der Beobachtung numerischer Daten, die in Tabellen vorliegen oder durch umfangreiche Berechnungen gewonnen wurden. Manchmal folgen die Ergebnisse aus einer statistischen Analyse der Daten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1857 Bunjakowski, W. Nouveaux théorèmes relatifs à la distribution des nombres premiers et à la décomposition des entiers en facteurs. Mém. Acad. Sci. St. Petersbourg (6), Sci. Math. Phys., 6 (1857), 305–329.Google Scholar
  2. 1904 Dickson, L.E. A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math. 33 (1904), 155–161.Google Scholar
  3. 1922 Nagell, T. Zur Arithmetik der Polynome. Abhandl. Math. Sem. Univ. Hamburg 1 (1922), 179–194.Google Scholar
  4. 1923 Hardy, G.H. & Littlewood, J.E. Some problems in “Partitio Numerorum”, III: On the expression of a number as a sum of primes. Acta Math. 44 (1923), 1–70. Nachdruck in Collected Papers of G.H. Hardy, Bd. I, 561–630. Clarendon Press, Oxford 1966.Google Scholar
  5. 1931 Heilbronn, H. Über die Verteilung der Primzahlen in Polynomen. Math. Ann. 104 (1931), 794–799.CrossRefMathSciNetGoogle Scholar
  6. 1932 Breusch, R. Zur Verallgemeinerung des Bertrandschen Postulates, dass zwischen x und 2x stets Primzahlen liegen. Math. Zeitschrift 34 (1932), 505–526.CrossRefMathSciNetGoogle Scholar
  7. 1939 Beeger, N.G.W.H. Report on some calculations of prime numbers. Nieuw Arch. Wisk. 20 (1939), 48–50.MATHMathSciNetGoogle Scholar
  8. 1958 Schinzel, A. & Sierpiński, W. Sur certaines hypothèses concernant les nombres premiers. Remarque. Acta Arith. 4 (1958), 185–208, und 5 (1959), S. 259.Google Scholar
  9. 1961 Schinzel, A. Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers”. Acta Arith. 7 (1961), 1–8.MATHMathSciNetGoogle Scholar
  10. 1964 Sierpiński, W. Les binômes x 2 + n et les nombres premiers. Bull. Soc. Roy. Sci. Liége 33 (1964), 259–260.MATHGoogle Scholar
  11. 1969 Rieger, G.J. On polynomials and almost-primes. Bull. Amer. Math. Soc. 75 (1969), 100–103.MATHCrossRefMathSciNetGoogle Scholar
  12. 1971 Shanks, D. A low density of primes. J. Recr. Math. 4 (1971/72), 272–275.Google Scholar
  13. 1973 Wunderlich, M.C. On the Gaussian primes on the line Im(x) = 1. Math. Comp. 27 (1973), 399–400.MATHMathSciNetGoogle Scholar
  14. 1974 Halberstam, H. & Richert, H.E. Sieve Methods. Academic Press, New York 1974.MATHGoogle Scholar
  15. 1975 Shanks, D. Calculation and applications of Epstein zeta functions. Math. Comp. 29 (1975), 271–287.MATHCrossRefMathSciNetGoogle Scholar
  16. 1978 Iwaniec, H. Almost-primes represented by quadratic polynomials. Invent. Math. 47 (1978), 171–188.MATHCrossRefMathSciNetGoogle Scholar
  17. 1982 Powell, B. Problem 6384 (Numbers of the form m p −n). Amer. Math. Monthly 89 (1982), S. 278.CrossRefGoogle Scholar
  18. 1983 Israel, R.B. Solution of problem 6384. Amer. Math. Monthly 90 (1983), S. 650.MathSciNetGoogle Scholar
  19. 1984 Gupta, R. & Ram Murty, P.M. A remark on Artin’s conjecture. Invent. Math. 78 (1984), 127–130.MATHCrossRefMathSciNetGoogle Scholar
  20. 1984 McCurley, K.S. Prime values of polynomials and irreducibility testing. Bull. Amer. Math. Soc. 11 (1984), 155–158.MATHCrossRefMathSciNetGoogle Scholar
  21. 1986 Heath-Brown, D.R. Artin’s conjecture for primitive roots. Quart. J. Math. Oxford (2) 37 (1986), 27–38.MATHCrossRefMathSciNetGoogle Scholar
  22. 1986 McCurley, K.S. The smallest prime value of x n + a. Can. J. Math. 38 (1986), 925–936.MATHCrossRefMathSciNetGoogle Scholar
  23. 1986 McCurley, K.S. Polynomials with no small prime values. Proc. Amer. Math. Soc. 97 (1986), 393–395.MATHMathSciNetGoogle Scholar
  24. 1990 Fung, G.W. & Williams, H.C. Quadratic polynomials which have a high density of prime values. Math. Comp. 55 (1990), 345–353.MATHCrossRefMathSciNetGoogle Scholar
  25. 1994 Alford, W.R., Granville, A. & Pomerance, C. There are infinitely many Carmichael numbers. Annals of Math. (2) 140 (1994), 703–722.CrossRefMathSciNetGoogle Scholar
  26. 1995 Jacobson Jr., M.J. Computational Techniques in Quadratic Fields. Magisterarbeit, University of Manitoba, Winnipeg, Manitoba 1995.Google Scholar
  27. 1998 Friedlander, J.B. & Iwaniec, H. The polynomial x 2 + y 4 captures its primes. Annals of Math. (2) 148 (1998), 945–1040.MATHCrossRefMathSciNetGoogle Scholar
  28. 2001 Dubner, H. & Forbes, T. Prime Pythagorean triangles. J. Integer Seq. 4 (2001), Art. 01.2.3, 1–11 (elektronisch).Google Scholar
  29. 2001 Heath-Brown, D.R. Primes represented by x 3 + 2y 3. Acta Math. 186 (2001), 1–84.MATHCrossRefMathSciNetGoogle Scholar
  30. 2003 Jacobson Jr., M.J. & Williams, H.C. New quadratic polynomials with high densities of prime values. Math. Comp. 72 (2003), 499–519.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations