Skip to main content

Wie sind die Primzahlen verteilt?

  • Chapter
  • First Online:
  • 3345 Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Wie ich bereits betont hatte, sind die verschiedenen Beweise der Unendlichkeit der Anzahl der Primzahlen nicht konstruktiv. Man erhält daher keine Aussage darüber, wie man die n-te Primzahl bestimmen kann. Zudem geben die Beweise auch keinen Hinweis darauf, wie viele Primzahlen es bis zu einer vorgegebenen Zahl N gibt. Und umgekehrt ist keine vernünftige Formel oder Funktion bekannt, die die Primzahlen repräsentiert.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • 1849 de Polignac, A. Recherches nouvelles sur les nombres premiers. C.R. Acad. Sci. Paris 29 (1849), 397–401; Rectification: 738–739.

    Google Scholar 

  • 1885 Meissel, E.D.F. Berechnung der Menge von Primzahlen, welche innerhalb der ersten Milliarde natürlicher Zahlen vorkommen. Math. Ann. 25 (1885), 251–257.

    Article  MathSciNet  Google Scholar 

  • 1892 Sylvester, J.J. On arithmetical series. Messenger of Math. 21 (1892), 1–19 und 87–120. Nachdruck in Gesammelte Abhandlungen, Bd. III, 573–587. Springer-Verlag, New York 1968.

    Google Scholar 

  • 1901 Torelli, G. Sulla totalità dei numeri primi fino ad un limite assegnato. Atti Reale Accad. Sci. Fis. Mat. Napoli (2) 11 (1901), 1–222.

    Google Scholar 

  • 1901 von Koch, H. Sur la distribution des nombres premiers. Acta Math. 24 (1901), 159–182.

    Article  MathSciNet  Google Scholar 

  • 1901 Wolfskehl, P. Über eine Aufgabe der elementaren Arithmetik. Math. Ann. 54 (1901), 503–504.

    Article  MATH  MathSciNet  Google Scholar 

  • 1903 Gram, J.-P. Note sur les zéros de la fonction ζ(s) de Riemann. Acta Math. 27 (1903), 289–304.

    Article  MATH  MathSciNet  Google Scholar 

  • 1909 Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen. Teubner, Leipzig 1909. Nachdruck bei Chelsea, Bronx, NY 1974.

    Google Scholar 

  • 1909 Lehmer, D.N. Factor Table for the First Ten Millions. Carnegie Inst., Publication #105, Washington 1909. Nachdruck bei Hafner, New York 1956.

    MATH  Google Scholar 

  • 1914 Lehmer, D.N. List of Prime Numbers from 1 to 10,006,721. Carnegie Inst., Publication #165, Washington 1914. Nachdruck bei Hafner, New York 1956.

    MATH  Google Scholar 

  • 1914 Littlewood, J.E. Sur la distribution des nombres premiers. C.R. Acad. Sci. Paris 158 (1914), 1869–1872.

    MATH  Google Scholar 

  • 1919 Brun, V. Le crible d’Eratosthène et le théorème de Goldbach. C.R. Acad. Sci. Paris 168 (1919), 544–546.

    MATH  Google Scholar 

  • 1919 Brun, V. La série \(\frac{1}{5} + \frac{1}{7} + \frac{1}{{11}} + \frac{1}{{13}} + \frac{1}{{17}} + \frac{1}{{19}} + \frac{1}{{29}} + \frac{1}{{31}} + \frac{1}{{41}} + \frac{1}{{43}} + \frac{1}{{59}} + \frac{1}{{61}} + \cdot \cdot \cdot \) où les dénominateurs sont “nombres premiers jumeaux” est convergente ou finie. Bull. Sci. Math. (2) 43 (1919), 100–104 und 124–128.

    Google Scholar 

  • 1919 Ramanujan, S. A proof of Bertrand’s postulate. J. Indian Math. Soc. 11 (1919), 181–182. Nachdruck in Collected Papers of Srinivasa Ramanujan (Hrsg. G.H. Hardy und P.V. Seshu Aiyar), 208–209. Cambridge Univ. Press, Cambridge 1927. Nachdruck hiervon bei Chelsea, Bronx, NY 1962.

    Google Scholar 

  • 1920 Brun, V. Le crible d’Eratosthène et le théorème de Goldbach. Videnskapsselskapets Skrifter Kristiania, Mat.-nat. Kl., 1920, No. 3, 36 Seiten.

    Google Scholar 

  • 1923 Hardy, G.H. & Littlewood, J.E. Some problems of “Partitio Numerorum”, III: On the expression of a number as a sum of primes. Acta Math. 44 (1923), 1–70. Nachdruck in Collected Papers of G.H. Hardy, Bd. I, 561–630. Clarendon Press, Oxford 1966.

    Google Scholar 

  • 1930 Hoheisel, G. Primzahlprobleme in der Analysis. Sitzungsberichte Berliner Akad. d. Wiss., 1930, 580–588.

    Google Scholar 

  • 1930 Schnirelmann, L. Über additive Eigenschaften von Zahlen. Ann. Inst. Polytechn. Novoćerkask, 14 (1930), 3–28, und Math. Ann. 107 (1933), 646–690.

    Google Scholar 

  • 1931 Westzynthius, E. Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind. Comm. Phys. Math. Helsingfors (5) 25 (1931), 1–37.

    Google Scholar 

  • 1932 Erdös, P. Beweis eines Satzes von Tschebyscheff. Acta Sci. Math. Szeged 5 (1932), 194–198.

    MATH  Google Scholar 

  • 1933 Skewes, S. On the difference \(\pi \left( x \right) - {\textrm{li}}\left( x \right)\). J. London Math. Soc. 8 (1933), 277–283.

    Article  MATH  Google Scholar 

  • 1934 Ishikawa, H. Über die Verteilung der Primzahlen. Sci. Rep. Tokyo Bunrika Daigaku (A) 2 (1934), 27–40.

    Google Scholar 

  • 1934 Romanoff, N.P. Über einige Sätze der additiven Zahlentheorie. Math. Ann. 109 (1934), 668–678.

    Article  MathSciNet  Google Scholar 

  • 1935 Erdös, P. On the difference of consecutive primes. Quart. J. Pure and Appl. Math., Oxford, (2) 6 (1935), 124–128.

    Google Scholar 

  • 1936 Tschudakoff, N.G. On the zeros of Dirichlet’s L-functions (russisch). Mat. Sbornik 1 (1936), 591–602.

    Google Scholar 

  • 1937 Cramér, H. On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2 (1937), 23–46.

    Google Scholar 

  • 1937 Ingham, A.E. On the difference between consecutive primes. Quart. J. Pure and Appl. Math., Oxford, (2) 8 (1937), 255–266.

    Google Scholar 

  • 1937 Landau, E. Über einige neuere Fortschritte der additiven Zahlentheorie. Cambridge Univ. Press, Cambridge 1937. Nachdruck bei Stechert-Hafner, New York 1964.

    Google Scholar 

  • 1937 van der Corput, J.G. Sur l’hypothèse de Goldbach pour presque tous les nombres pairs. Acta Arith. 2 (1937), 266–290.

    MATH  Google Scholar 

  • 1937 Winogradoff, I.M. Representation of an odd number as the sum of three primes (russisch). Dokl. Akad. Nauk SSSR 15 (1937), 169–172.

    Google Scholar 

  • 1938 Estermann, T. Proof that almost all even positive integers are sums of two primes. Proc. London Math. Soc. 44 (1938), 307–314.

    Article  MATH  Google Scholar 

  • 1938 Poulet, P. Table des nombres composés vérifiant le théorème de Fermat pour le module 2, jusqu’ à 100.000.000. Sphinx 8 (1938), 42–52. Berichtigungen: Math. Comp. 25 (1971), 944–945, und 26 (1972), S. 814.

    Google Scholar 

  • 1938 Rankin, R.A. The difference between consecutive prime numbers. J. London Math. Soc. 13 (1938), 242–247.

    Article  MATH  Google Scholar 

  • 1938 Rosser, J.B. The nth prime is greater than n log n. Proc. London Math. Soc. 45 (1938), 21–44.

    Article  MATH  Google Scholar 

  • 1938 Tschudakoff, N.G. On the density of the set of even integers which are not representable as a sum of two odd primes (russisch). Izv. Akad. Nauk SSSR, Ser. Mat., 1 (1938), 25–40.

    Google Scholar 

  • 1939 van der Corput, J.G. Über Summen von Primzahlen und Primzahlquadraten. Math. Ann. 116 (1939), 1–50.

    Article  MathSciNet  Google Scholar 

  • 1940 Erdös, P. The difference of consecutive primes. Duke Math. J. 6 (1940), 438–441.

    Article  MathSciNet  Google Scholar 

  • 1944 Chowla, S. There exists an infinity of 3-combinations of primes in A. P. Proc. Lahore Phil. Soc. 6 (1944), 15–16.

    MathSciNet  Google Scholar 

  • 1944 Linnik, Yu.V. On the least prime in an arithmetic progression I. The basic theorem (russisch). Mat. Sbornik 15 (57), (1944), 139–178.

    MathSciNet  Google Scholar 

  • 1946 Brauer, A. On the exact number of primes below a given limit. Amer. Math. Monthly 9 (1946), 521–523.

    Article  MathSciNet  Google Scholar 

  • 1947 Khinchin, A.Ya. Three Pearls of Number Theory. Russische Originalausgabe in OGIZ, Moskau 1947. Englische Übersetzung bei Graylock Press, Baltimore 1952.

    MATH  Google Scholar 

  • 1947 Rényi, A. On the representation of even numbers as the sum of a prime and an almost prime. Dokl. Akad. Nauk SSSR 56 (1947), 455–458.

    MATH  Google Scholar 

  • 1949 Clement, P.A. Congruences for sets of primes. Amer. Math. Monthly 56 (1949), 23–25.

    Article  MATH  MathSciNet  Google Scholar 

  • 1949 Erdös, P. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. USA 35 (1949), 374–384.

    Article  MATH  Google Scholar 

  • 1949 Erdös, P. On the converse of Fermat’s theorem. Amer. Math. Monthly 56 (1949), 623–624.

    Article  MATH  MathSciNet  Google Scholar 

  • 1949 Moser, L. A theorem on the distribution of primes. Amer. Math. Monthly 56 (1949), 624–625.

    Article  MATH  MathSciNet  Google Scholar 

  • 1949 Richert, H.E. Über Zerfällungen in ungleiche Primzahlen. Math. Zeitschrift 52 (1949), 342–343.

    Article  MATH  MathSciNet  Google Scholar 

  • 1949 Selberg, A. An elementary proof of Dirichlet’s theorem about primes in an arithmetic progression. Annals of Math. 50 (1949), 297–304.

    Article  MathSciNet  Google Scholar 

  • 1949 Selberg, A. An elementary proof of the prime number theorem. Annals of Math. 50 (1949), 305–313.

    Article  MathSciNet  Google Scholar 

  • 1950 Erdös, P. On almost primes. Amer. Math. Monthly 57 (1950), 404–407.

    Article  MATH  MathSciNet  Google Scholar 

  • 1950 Erdös, P. On integers of the form \(2^{k} + p\) and some related problems, Summa Bras. Math. 2 (1950), 113–123.

    Google Scholar 

  • 1950 Hasse, H. Vorlesungen über Zahlentheorie. Springer-Verlag, Berlin 1950 (2. Auflage 1964).

    MATH  Google Scholar 

  • 1950 Selberg, A. An elementary proof of the prime number theorem for arithmetic progressions. Can. J. Math. 2 (1950), 66–78.

    Article  MATH  MathSciNet  Google Scholar 

  • 1951 Titchmarsh, E.C. The Theory of the Riemann Zeta Function. Clarendon Press, Oxford 1951 (2. Auflage 1986, Nachdruck 1999).

    MATH  Google Scholar 

  • 1956 Borodzkin, K.G. On the problem of I.M. Vinogradov’s constant (russisch). Proc. Third Math. Congress, Moskau, 1 (1956), S. 3.

    Google Scholar 

  • 1956 Erdös, P. On pseudo-primes and Carmichael numbers. Publ. Math. Debrecen 4 (1956), 201–206.

    MATH  MathSciNet  Google Scholar 

  • 1957 Leech, J. Note on the distribution of prime numbers. J. London Math. Soc. 32 (1957), 56–58.

    Article  MATH  MathSciNet  Google Scholar 

  • 1957 Pan, C.D. On the least prime in an arithmetic progression. Sci. Record (N.S.) 1 (1957), 311–313.

    MATH  MathSciNet  Google Scholar 

  • 1958 Pan, C.D. On the least prime in an arithmetic progression. Acta Sci. Natur. Univ. Pekinensis 4 (1958), 1–34.

    Google Scholar 

  • 1958 Schinzel, A. & Sierpiński, W. Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4 (1958), 185–208; Erratum, 5 (1959), S. 259.

    Google Scholar 

  • 1959 Killgrove, R.B. & Ralston, K.E. On a conjecture concerning the primes. Math. Comp. 13 (1959), 121–122.

    MATH  MathSciNet  Google Scholar 

  • 1959 Lehmer, D.H. On the exact number of primes less than a given limit. Illinois J. Math. 3 (1959), 381–388. Nachdruck in Selected Papers (Hrsg. D. McCarthy), Bd. III, 1104–1111. Ch. Babbage Res. Centre, St. Pierre, Manitoba 1981.

    Google Scholar 

  • 1959 Schinzel, A. Démonstration d’une conséquence de l’hypothèse de Goldbach. Compositio Math. 14 (1959), 74–76.

    MathSciNet  Google Scholar 

  • 1960 Golomb, S.W. The twin prime constant. Amer. Math. Monthly 67 (1960), 767–769.

    Article  MATH  MathSciNet  Google Scholar 

  • 1961 Prachar, K. Über die kleinste Primzahl einer arithmetischen Reihe. J. Reine Angew. Math. 206 (1961), 3–4.

    MATH  MathSciNet  Google Scholar 

  • 1961 Schinzel, A. Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers”. Acta Arith. 7 (1961), 1–8.

    MATH  MathSciNet  Google Scholar 

  • 1961 Wrench Jr., J.W. Evaluation of Artin’s constant and the twinprime constant. Math. Comp. 15 (1961), 396–398.

    MATH  MathSciNet  Google Scholar 

  • 1962 Rosser, J.B. & Schoenfeld, L. Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64–94.

    MATH  MathSciNet  Google Scholar 

  • 1962 Schinzel, A. Remark on a paper of K. Prachar „ Über die kleinste Primzahl einer arithmetischen Reihe“. J. Reine Angew. Math. 210 (1962), 121–122.

    MATH  MathSciNet  Google Scholar 

  • 1963 Ayoub, R.G. An Introduction to the Analytic Theory of Numbers. Amer. Math. Soc., Providence, RI 1963.

    MATH  Google Scholar 

  • 1963 Kanold, H.-J. Elementare Betrachtungen zur Primzahltheorie. Arch. Math. 14 (1963), 147–151.

    Article  MATH  MathSciNet  Google Scholar 

  • 1963 Rankin, R.A. The difference between consecutive prime numbers, V. Proc. Edinburgh Math. Soc. (2) 13 (1963), 331–332.

    Google Scholar 

  • 1963 Rotkiewicz, A. Sur les nombres pseudo-premiers de la forme \(ax + b\). C.R. Acad. Sci. Paris 257 (1963), 2601–2604.

    MATH  MathSciNet  Google Scholar 

  • 1963 Walfisz, A.Z. Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher Verlag d. Wiss., Berlin 1963.

    MATH  Google Scholar 

  • 1964 Grosswald, E. A proof of the prime number theorem. Amer. Math. Monthly 71 (1964), 736–743.

    Article  MATH  MathSciNet  Google Scholar 

  • 1964 Shanks, D. On maximal gaps between successive primes. Math. Comp. 18 (1964), 646–651.

    Article  MathSciNet  Google Scholar 

  • 1965 Chen, J.R. On the least prime in an arithmetical progression. Sci. Sinica 14 (1965), 1868–1871.

    MATH  MathSciNet  Google Scholar 

  • 1965 Gelfond, A.O. & Linnik, Yu.V. Elementary Methods in Analytic Number Theory. Übersetzung von A. Feinstein, durchgesehen und herausgegeben von L.J. Mordell. Rand McNally, Chicago 1965.

    Google Scholar 

  • 1965 Rotkiewicz, A. Les intervalles contenant les nombres pseudopremiers. Rend. Circ. Mat. Palermo (2) 14 (1965), 278–280.

    Google Scholar 

  • 1965 Stein, M.L. & Stein, P.R. New experimental results on the Goldbach conjecture. Math. Mag. 38 (1965), 72–80.

    Article  MATH  MathSciNet  Google Scholar 

  • 1965 Stein, M.L. & Stein, P.R. Experimental results on additive 2-bases. Math. Comp. 19 (1965), 427–434.

    Article  MATH  Google Scholar 

  • 1966 Bombieri, E. & Davenport, H. Small differences between prime numbers. Proc. Roy. Soc. (A) 293 (1966), 1–18.

    Google Scholar 

  • 1966 Lehman, R.S. On the difference \(\pi \left( x \right) - {\textrm{li}}\left( x \right)\). Acta Arith. 11 (1966), 397–410.

    MATH  MathSciNet  Google Scholar 

  • 1967 Lander, L.J. & Parkin, T.R. On the first appearance of prime differences. Math. Comp. 21 (1967), 483–488.

    Article  MATH  MathSciNet  Google Scholar 

  • 1967 Lander, L.J. & Parkin, T.R. Consecutive primes in arithmetic progression. Math. Comp. 21 (1967), S. 489.

    Article  MATH  Google Scholar 

  • 1967 Rotkiewicz, A. On the pseudo-primes of the form \(ax + b\). Proc. Cambridge Phil. Soc. 63 (1967), 389–392.

    Article  MATH  MathSciNet  Google Scholar 

  • 1967 Szymiczek, K. On pseudoprimes which are products of distinct primes. Amer. Math. Monthly 74 (1967), 35–37.

    Article  MATH  MathSciNet  Google Scholar 

  • 1969 Montgomery, H.L. Zeros of L-functions. Invent. Math. 8 (1969), 346–354.

    Article  MATH  MathSciNet  Google Scholar 

  • 1969 Rosser, J.B., Yohe, J.M. & Schoenfeld, L. Rigorous computation of the zeros of the Riemann zeta-function (with discussion). In Inform. Processing 68 (Proc. IFIP Congress, Edinburgh 1968), Bd. I, 70–76. North-Holland, Amsterdam 1969.

    Google Scholar 

  • 1970 Diamond, H.G. & Steinig, J. An elementary proof of the prime number theorem with a remainder term. Invent. Math. 11 (1970), 199–258.

    Article  MathSciNet  Google Scholar 

  • 1972 Huxley, M.N. On the difference between consecutive primes. Invent. Math. 15 (1972), 164–170.

    Article  MATH  MathSciNet  Google Scholar 

  • 1972 Huxley, M.N. The Distribution of Prime Numbers. Oxford Univ. Press, Oxford 1972.

    MATH  Google Scholar 

  • 1972 Rotkiewicz, A. On a problem of W. Sierpiński. Elem. Math. 27 (1972), 83–85.

    MATH  MathSciNet  Google Scholar 

  • 1973 Brent, R.P. The first occurrence of large gaps between successive primes. Math. Comp. 27 (1973), 959–963.

    Article  MATH  MathSciNet  Google Scholar 

  • 1973/1978 Chen, J.R. On the representation of a large even integer as the sum of a prime and the product of at most two primes, I and II. Sci. Sinica 16 (1973), 157–176, und 21 (1978), 421–430.

    Google Scholar 

  • 1973 Montgomery, H.L. The pair correlation of zeros of the zeta function. In Analytic Number Theory (Proc. Symp. Pure Math., Bd. XXIV, St. Louis 1972), 181–193. Amer. Math. Soc., Providence, RI 1973.

    Google Scholar 

  • 1973 Montgomery, H.L. & Vaughan, R.C. The large sieve. Mathematika 20 (1973), 119–134.

    Article  MATH  MathSciNet  Google Scholar 

  • 1974 Ayoub, R.G. Euler and the zeta-function. Amer. Math. Monthly 81 (1974), 1067–1086.

    Article  MATH  MathSciNet  Google Scholar 

  • 1974 Edwards, H.M. Riemann's Zeta Function. Academic Press, New York 1974. Nachdruck bei Dover, New York 2001.

    MATH  Google Scholar 

  • 1974 Halberstam, H. & Richert, H.E. Sieve Methods. Academic Press, New York 1974.

    MATH  Google Scholar 

  • 1974 Hensley, D. & Richards, I. Primes in intervals. Acta Arith. 25 (1974), 375–391.

    MATH  MathSciNet  Google Scholar 

  • 1974 Levinson, N. More than one third of zeros of Riemann’s zeta function are on \(\sigma = 1/2\). Adv. in Math. 13 (1984), 383–436.

    Article  MathSciNet  Google Scholar 

  • 1974 Mąkowski, A. On a problem of Rotkiewicz on pseudoprimes. Elem. Math. 29 (1974), S. 13.

    Google Scholar 

  • 1974 Richards, I. On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438.

    Article  MATH  MathSciNet  Google Scholar 

  • 1974 Shanks, D. & Wrench, J.W. Brun’s constant. Math. Comp. 28 (1974), 293–299.

    MATH  MathSciNet  Google Scholar 

  • 1975 Brent, R.P. Irregularities in the distribution of primes and twin primes. Math. Comp. 29 (1975), 43–56.

    Article  MATH  MathSciNet  Google Scholar 

  • 1975 Montgomery, H.L. & Vaughan, R.C. The exceptional set in Goldbach’s problem. Acta Arith. 27 (1975), 353–370.

    MATH  MathSciNet  Google Scholar 

  • 1975 Ross, P.M. On Chen’s theorem that each large even number has the form \(p_1 + p_2 \) or \(p_1 + p_2 p_3 \). J. London Math. Soc. (2) 10 (1975), 500–506.

    Google Scholar 

  • 1975 Rosser, J.B. & Schoenfeld, L. Sharper bounds for the Chebyshev functions \(\theta \left( x \right)\) and \(\psi \left( x \right)\). Math. Comp. 29 (1975), 243–269.

    MATH  MathSciNet  Google Scholar 

  • 1975 Swift, J.D. Table of Carmichael numbers to 109. Math. Comp. 29 (1975), 338–339.

    Article  Google Scholar 

  • 1975 Szemerédi, E. On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 (1975), 199–245.

    MATH  MathSciNet  Google Scholar 

  • 1975 Udrescu, V.S. Some remarks concerning the conjecture \(\pi \left( {x + y} \right) \le \pi \left( x \right) + \pi \left( y \right)\). Rev. Roumaine Math. Pures Appl. 20 (1975), 1201–1209.

    MATH  MathSciNet  Google Scholar 

  • 1976 Apostol, T.M. Introduction to Analytic Number Theory. Springer- Verlag, New York 1976.

    MATH  Google Scholar 

  • 1976 Brent, R.P. Tables concerning irregularities in the distribution of primes and twin primes to 1011. Math. Comp. 30 (1976), S. 379.

    Article  MathSciNet  Google Scholar 

  • 1977 Hudson, R.H. A formula for the exact number of primes below a given bound in any arithmetic progression. Bull. Austral. Math. Soc. 16 (1977), 67–73.

    Article  MATH  MathSciNet  Google Scholar 

  • 1977 Hudson, R.H. & Brauer, A. On the exact number of primes in the arithmetic progressions \(4n \pm 1\) and \(6n \pm 1\). J. Reine Angew. Math. 291 (1977), 23–29.

    MATH  MathSciNet  Google Scholar 

  • 1977 Huxley, M.N. Small differences between consecutive primes, II. Mathematika 24 (1977), 142–152.

    Article  MathSciNet  Google Scholar 

  • 1977 Jutila, M. On Linnik’s constant. Math. Scand. 41 (1977), 45–62.

    MATH  MathSciNet  Google Scholar 

  • 1977 Langevin, M. Méthodes élémentaires en vue du théorème de Sylvester. Sém. Delange-Pisot-Poitou, 17e année, 1975/76, fasc. 1, exp. No. G12, 9 Seiten, Paris 1977.

    Google Scholar 

  • 1977 Weintraub, S. Seventeen primes in arithmetic progression. Math. Comp. 31 (1977), S. 1030.

    Article  MATH  MathSciNet  Google Scholar 

  • 1978 Bays, C. & Hudson, R.H. On the fluctuations of Littlewood for primes of the form \(4n \pm 1\). Math. Comp. 32 (1978), 281–286.

    MATH  MathSciNet  Google Scholar 

  • 1978 Heath-Brown, D.R. Almost-primes in arithmetic progressions and short intervals. Math. Proc. Cambridge Phil. Soc. 83 (1978), 357–375.

    Article  MATH  MathSciNet  Google Scholar 

  • 1979 Brent, R.P. On the zeros of the Riemann zeta function in the critical strip. Math. Comp. 33 (1979), 1361–1372.

    Article  MATH  MathSciNet  Google Scholar 

  • 1979 Heath-Brown, D.R. & Iwaniec, H. On the difference between consecutive powers. Bull. Amer. Math. Soc. (N.S.) 1 (1979), 758–760.

    Article  MATH  MathSciNet  Google Scholar 

  • 1979 Iwaniec, H. & Jutila, M. Primes in short intervals. Arkiv för Mat. 17 (1979), 167–176.

    Article  MATH  MathSciNet  Google Scholar 

  • 1979 Pomerance, C. The prime number graph. Math. Comp. 33 (1979), 399–408.

    Article  MATH  MathSciNet  Google Scholar 

  • 1979 Ribenboim, P. 13 Lectures on Fermat's Last Theorem. Springer- Verlag, New York 1979.

    MATH  Google Scholar 

  • 1979 Wagstaff Jr., S.S. Greatest of the least primes in arithmetic progressions having a given modulus. Math. Comp. 33 (1979), 1073–1080.

    Article  MATH  MathSciNet  Google Scholar 

  • 1979 Yorinaga, M. Numerical computation of Carmichael numbers, II. Math. J. Okayama Univ. 21 (1979), 183–205.

    MATH  MathSciNet  Google Scholar 

  • 1980 Brent, R.P. The first occurrence of certain large prime gaps. Math. Comp. 35 (1980), 1435–1436.

    Article  MATH  MathSciNet  Google Scholar 

  • 1980 Chen, J.R. & Pan, C.D. The exceptional set of Goldbach numbers, I. Sci. Sinica 23 (1980), 416–430.

    MathSciNet  Google Scholar 

  • 1980 Light, W.A., Forrest, J., Hammond, N. & Roe, S. A note on Goldbach’s conjecture. BIT 20 (1980), S. 525.

    Article  MATH  MathSciNet  Google Scholar 

  • 1980 Newman, D.J. Simple analytic proof of the prime number theorem. Amer. Math. Monthly 87 (1980), 693–696.

    Article  MATH  MathSciNet  Google Scholar 

  • 1980 Pintz, J. On Legendre’s prime number formula. Amer. Math. Monthly 87 (1980), 733–735.

    Article  MATH  MathSciNet  Google Scholar 

  • 1980 Pomerance, C. A note on the least prime in an arithmetic progression. J. Number Theory 12 (1980), 218–223.

    Article  MATH  MathSciNet  Google Scholar 

  • 1980 Pomerance, C., Selfridge, J.L. & Wagstaff Jr., S.S. The pseudoprimes to 25 · 109. Math. Comp. 35 (1980), 1003–1026.

    MATH  MathSciNet  Google Scholar 

  • 1980 van der Poorten, A.J. & Rotkiewicz, A. On strong pseudoprimes in arithmetic progressions. J. Austral. Math. Soc. (A) 29 (1980), 316–321.

    Google Scholar 

  • 1981 Graham, S. On Linnik’s constant. Acta Arith. 39 (1981), 163–179.

    MATH  MathSciNet  Google Scholar 

  • 1981 Heath-Brown, D.R. Three primes and an almost prime in arithmetic progression. J. London Math. Soc. (2) 23 (1981), 396–414.

    Google Scholar 

  • 1981 Pomerance, C. On the distribution of pseudoprimes. Math. Comp. 37 (1981), 587–593.

    Article  MATH  MathSciNet  Google Scholar 

  • 1982 Diamond, H.G. Elementary methods in the study of the distribution of prime numbers. Bull. Amer. Math. Soc. (N.S.) 7 (1982), 553–589.

    Article  MATH  MathSciNet  Google Scholar 

  • 1982 Pomerance, C. A new lower bound for the pseudoprimes counting function. Illinois J. Math. 26 (1982), 4–9.

    MATH  MathSciNet  Google Scholar 

  • 1982 Pritchard, P.A. 18 primes in arithmetic progression. J. Recr. Math. 15 (1982/83), S. 288.

    Google Scholar 

  • 1982 Weintraub, S. A prime gap of 682 and a prime arithmetic sequence. BIT 22 (1982), S. 538.

    Article  MATH  MathSciNet  Google Scholar 

  • 1983 Chen, J.R. The exceptional value of Goldbach numbers, II. Sci. Sinica (A) 26 (1983), 714–731.

    Google Scholar 

  • 1983 Powell, B. Problem 6429 (Difference between consecutive primes). Amer. Math. Monthly 90 (1983), S. 338.

    Google Scholar 

  • 1983 Riesel, H. & Vaughan, R.C. On sums of primes. Arkiv för Mat. 21 (1983), 45–74.

    Article  MATH  MathSciNet  Google Scholar 

  • 1983 Robin, G. Estimation de la fonction de Tschebychef θ sur le k ième nombre premier et grandes valeurs de la fonction ω(n), nombre de diviseurs premiers de n. Acta Arith. 42 (1983), 367–389.

    MATH  MathSciNet  Google Scholar 

  • 1984 Daboussi, H. Sur le théorème des nombres premiers. C.R. Acad. Sci. Paris 298 (1984), 161–164.

    MATH  MathSciNet  Google Scholar 

  • 1984 Davies, R.O. Solution of problem 6429. Amer. Math. Monthly 91 (1984), S. 64.

    Article  MathSciNet  Google Scholar 

  • 1984 Iwaniec, H. & Pintz, J. Primes in short intervals. Monatsh. Math. 98 (1984), 115–143.

    Article  MATH  MathSciNet  Google Scholar 

  • 1984 Schroeder, M.R. Number Theory in Science and Communication. Springer-Verlag, New York 1984 (4. Auflage 2005).

    MATH  Google Scholar 

  • 1984 Wang, Y. The Goldbach Conjecture. World Scientific Publ., Singapore 1984.

    Google Scholar 

  • 1985 Heath-Brown, D.R. The ternary Goldbach problem. Rev. Mat. Iberoamer. 1 (1985), 45–58.

    MATH  MathSciNet  Google Scholar 

  • 1985 Ivić, A. The Riemann Zeta-Function. J. Wiley and Sons, New York 1985.

    MATH  Google Scholar 

  • 1985 Lagarias, J.C., Miller, V.S. & Odlyzko, A.M. Computing \(\pi \left( x \right)\): The Meissel-Lehmer method. Math. Comp. 44 (1985), 537–560.

    MATH  MathSciNet  Google Scholar 

  • 1985 Lou, S. & Yao, Q. The upper bound of the difference between consecutive primes. Kexue Tongbao 8 (1985), 128–129.

    Google Scholar 

  • 1985 Maier, H. Primes in short intervals. Michigan Math. J. 32 (1985), 221–225.

    Article  MATH  MathSciNet  Google Scholar 

  • 1985 Odlyzko, A.M. & te Riele, H.J.J. Disproof of the Mertens conjecture. J. Reine Angew. Math. 357 (1985), 138–160.

    MATH  MathSciNet  Google Scholar 

  • 1985 Powell, B. Problem 1207 (A generalized weakened Goldbach theorem). Math. Mag. 58 (1985), S. 46.

    Article  MathSciNet  Google Scholar 

  • 1985 Pritchard, P.A. Long arithmetic progressions of primes: some old, some new. Math. Comp. 45 (1985), 263–267.

    Article  MATH  MathSciNet  Google Scholar 

  • 1985 te Riele, H.J.J. Some historical and other notes about the Mertens conjecture and its recent disproof. Nieuw Arch. Wisk. (4) 3 (1985), 237–243.

    Google Scholar 

  • 1986 Andrica, D. Note on a conjecture in prime number theory. Studia Univ. Babeş-Bolyai Math. 31, No. 4 (1986), 44–48.

    MATH  MathSciNet  Google Scholar 

  • 1986 Bombieri, E., Friedlander, J.B. & Iwaniec, H. Primes in arithmetic progression to large moduli, I. Acta Math. 156 (1986), 203–251.

    Article  MATH  MathSciNet  Google Scholar 

  • 1986 Finn, M.V. & Frohliger, J.A. Solution of problem 1207. Math. Mag. 59 (1986), 48–49.

    MathSciNet  Google Scholar 

  • 1986 Mozzochi, C.J. On the difference between consecutive primes. J. Number Theory 24 (1986), 181–187.

    Article  MathSciNet  Google Scholar 

  • 1986 van de Lune, J., te Riele, H.J.J. & Winter, D.T. On the zeros of the Riemann zeta function in the critical strip, IV. Math. Comp. 46 (1986), 667–681.

    Article  MATH  MathSciNet  Google Scholar 

  • 1986 Wagon, S. Where are the zeros of zeta of s? Math. Intelligencer 8, No. 4 (1986), 57–62.

    Article  MATH  MathSciNet  Google Scholar 

  • 1987 Pintz, J. An effective disproof of the Mertens conjecture. Astérisque 147/148 (1987), 325–333.

    MathSciNet  Google Scholar 

  • 1987 te Riele, H.J.J. On the sign of the difference \(\pi \left( x \right) - {\textrm{li}}\left( x \right)\). Math. Comp. 48 (1987), 323–328.

    MATH  MathSciNet  Google Scholar 

  • 1988 Erdös, P., Kiss, P. & Sárközy, A. A lower bound for the counting function of Lucas pseudoprimes. Math. Comp. 51 (1988), 315–323.

    MATH  MathSciNet  Google Scholar 

  • 1988 Odlyzko, A.M. & Schönhage, A. Fast algorithms for multiple evaluations of the Riemann zeta function. Trans. Amer. Math. Soc. 309 (1988), 797–809.

    Article  MATH  MathSciNet  Google Scholar 

  • 1988 Patterson, S.J. Introduction to the Theory of the Riemann Zeta-Function. Cambridge Univ. Press, Cambridge 1988.

    MATH  Google Scholar 

  • 1989 Chen, J.R. & Liu, J.M. On the least prime in an arithmetical progression, III and IV. Sci. China (A) 32 (1989), 654–673 und 792–807.

    Google Scholar 

  • 1989 Chen, J.R. & Wang, T.Z. On the odd Goldbach problem. Acta Math. Sinica 32 (1989), 702–718.

    MATH  MathSciNet  Google Scholar 

  • 1989 Conrey, J.B. At least two fifths of the zeros of the Riemann zeta function are on the critical line. Bull. Amer. Math. Soc. 20 (1989), 79–81.

    Article  MATH  MathSciNet  Google Scholar 

  • 1989 Granville, A., van de Lune, J. & te Riele, H.J.J. Checking the Goldbach conjecture on a vector computer. In Number Theory and Applications (Hrsg. R.A. Mollin), 423–432. Kluwer, Dordrecht 1989.

    Google Scholar 

  • 1989 Young, J. & Potler, A. First occurrence of prime gaps. Math. Comp. 52 (1989), 221–224.

    Article  MATH  MathSciNet  Google Scholar 

  • 1990 Granville, A. & Pomerance, C. On the least prime in certain arithmetic progressions. J. London Math. Soc. (2) 41 (1990), 193–200.

    Google Scholar 

  • 1990 Jaeschke, G. The Carmichael numbers to 1012. Math. Comp. 55 (1990), 383–389.

    MATH  MathSciNet  Google Scholar 

  • 1990 Parady, B.K., Smith, J.F. & Zarantonello, S. Largest known twin primes. Math. Comp. 55 (1990), 381–382.

    Article  MATH  MathSciNet  Google Scholar 

  • 1991 Weintraub, S. A prime gap of 784. J. Recr. Math. 23, No. 1 (1991), 6–7.

    MATH  Google Scholar 

  • 1992 Golomb, S.W. Problem 10208. Amer. Math. Monthly 99 (1992), S. 266.

    Google Scholar 

  • 1992 Granville, A. Primality testing and Carmichael numbers. Notices Amer. Math. Soc. 39 (1992), 696–700.

    Google Scholar 

  • 1992 Heath-Brown, D.R. Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression. Proc. London Math. Soc. (3) 64 (1992), 265–338.

    Google Scholar 

  • 1992 Pinch, R.G.E. The pseudoprimes up to 1012. Unveröffentlichtes Manuskript.

    Google Scholar 

  • 1993 Deshouillers, J.-M., Granville, A., Narkiewicz, W. & Pomerance, C. An upper bound in Goldbach’s problem. Math. Comp. 61 (1993), 209–213.

    MATH  MathSciNet  Google Scholar 

  • 1993 Lou, S. & Yao, Q. The number of primes in a short interval. Hardy-Ramanujan J. 16 (1993), 21–43.

    MATH  MathSciNet  Google Scholar 

  • 1993 Odlyzko, A.M. Iterated absolute values of differences of consecutive primes. Math. Comp. 61 (1993), 373–380.

    Article  MATH  MathSciNet  Google Scholar 

  • 1993 Pinch, R.G.E. The Carmichael numbers up to 1015. Math. Comp. 61 (1993), 381–391.

    MATH  MathSciNet  Google Scholar 

  • 1993 Pomerance, C. Carmichael numbers. Nieuw Arch. Wisk. (4) 11 (1993), 199–209.

    Google Scholar 

  • 1993 Sinisalo, M.K. Checking the Goldbach conjecture up to 4 × 1011. Math. Comp. 61 (1993), 931–934.

    MATH  MathSciNet  Google Scholar 

  • 1994 Alford, W.R., Granville, A. & Pomerance, C. There are infinitely many Carmichael numbers. Annals of Math. 140 (1994), 703–722.

    Article  MathSciNet  Google Scholar 

  • 1994 Lou, S. & Yao, Q. Estimates of sums of Dirichlet series. Hardy- Ramanujan J. 17 (1994), 1–31.

    MATH  MathSciNet  Google Scholar 

  • 1995 Ford, K. Solution of problem 10208. Amer. Math. Monthly 102 (1995), 361–362.

    Article  MathSciNet  Google Scholar 

  • 1995 Nicely, T.R. Enumeration to 1014 of the twin primes and Brun’s constant. Virginia J. of Sci. 46 (1995), 195–204.

    MathSciNet  Google Scholar 

  • 1995 Pritchard, P.A., Moran, A. & Thyssen, A. Twenty-two primes in arithmetic progression. Math. Comp. 64 (1995), 1337–1339.

    Article  MATH  MathSciNet  Google Scholar 

  • 1995 Ramaré, O. On Snirel’man’s constant. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 22 (1995), 645–706.

    Google Scholar 

  • 1996 Chen, J.R. & Wang, T.Z. The Goldbach problem for odd numbers. Acta Math. Sinica 39 (1996), 169–174.

    MATH  Google Scholar 

  • 1996 Connes, A. Formule de trace en géométrie non-commutative et hypothèse de Riemann. C.R. Acad. Sci. Paris 323 (1996), 1231–1236.

    MATH  MathSciNet  Google Scholar 

  • 1996 Deléglise, M. & Rivat, J. Computing \(\pi \left( x \right)\): The Meissel, Lehmer, Lagarias, Miller, Odlyzko method. Math. Comp. 65 (1996), 235–245.

    Article  MATH  MathSciNet  Google Scholar 

  • 1996 Indlekofer, K.-H. & Járai, A. Largest known twin primes. Math. Comp. 65 (1996), 427–428.

    Article  MATH  MathSciNet  Google Scholar 

  • 1996 Massias, J.-P. & Robin, G. Bornes effectives pour certaines fonctions concernant les nombres premiers. J. Théor. Nombres Bordeaux 8 (1996), 215–242.

    MATH  MathSciNet  Google Scholar 

  • 1996 Ramaré, O. & Rumely, R. Primes in arithmetic progressions. Math. Comp. 65 (1996), 397–425.

    Article  MATH  MathSciNet  Google Scholar 

  • 1996 Shiu, D.K.L. Prime Numbers in Arithmetical Progressions. Dissertation, University of Oxford, 1996.

    Google Scholar 

  • 1997 Deshouillers, J.-M., Effinger, G., te Riele, H. & Zinoviev, D. A complete Vinogradov 3-primes theorem under the Riemann Hypothesis. Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 99–104.

    Article  MATH  MathSciNet  Google Scholar 

  • 1997 Dubner, H. & Nelson, H. Seven consecutive primes in arithmetic progression. Math. Comp. 66 (1997), 1743–1749.

    Article  MATH  MathSciNet  Google Scholar 

  • 1997 Forbes, T. A large pair of twin primes. Math. Comp. 66 (1997), 451–455.

    Article  MATH  MathSciNet  Google Scholar 

  • 1997 Mollin, R.A. Prime-producing quadratics. Amer. Math. Monthly 104 (1997), 529–544.

    Article  MATH  MathSciNet  Google Scholar 

  • 1998 Deléglise, M. & Rivat, J. Computing \(\psi \left( x \right)\). Math. Comp. 67 (1998), 1691–1696.

    Article  MATH  MathSciNet  Google Scholar 

  • 1998 Deshouillers, J.-M. , te Riele, H.J.J. & Saouter, Y. New experimental results concerning the Goldbach conjecture. In Proc. Third Int. Symp. on Algorithmic Number Th. (Hrsg. J.P. Buhler). Lecture Notes in Computer Sci. #1423, 204–215. Springer-Verlag, New York 1998.

    Chapter  Google Scholar 

  • 1998 Dusart, P. Autour de la fonction qui compte le nombre de nombres premiers. Dissertation, Université de Limoges, 1998, 171 Seiten.

    Google Scholar 

  • 1998 Pinch, R.G.E. The Carmichael numbers up to 1016. Preprint arXiv:math.NT/9803082, 1998.

    Google Scholar 

  • 1998 Saouter, Y. Checking the odd Goldbach conjecture up to 1020. Math. Comp. 67 (1998), 863–866.

    Article  MATH  MathSciNet  Google Scholar 

  • 1999 Dusart, P. The k th prime is greater than \(k\left( {\ln k + \ln \ln k - 1} \right)\) for \(k \ge 2\). Math. Comp. 68 (1999), 411–415.

    Article  MATH  MathSciNet  Google Scholar 

  • 1999 Dusart, P. Inégalités explicites pour \(\psi \left( x \right),\,\theta \left( x \right),\,\pi \left( x \right)\) et les nombres premiers. C.R. Math. Rep. Acad. Sci. Canada 21 (1999), 53–59.

    MATH  MathSciNet  Google Scholar 

  • 1999 Forbes, T. Prime clusters and Cunningham chains. Math. Comp. 68 (1999), 1739–1747.

    Article  MATH  MathSciNet  Google Scholar 

  • 1999 Indlekofer, K.-H. & Járai, A. Largest known twin primes and Sophie Germain primes. Math. Comp. 68 (1999), 1317–1324.

    Article  MATH  MathSciNet  Google Scholar 

  • 1999 Nicely, T.R. New maximal prime gaps and first occurrences. Math. Comp. 68 (1999), 1311–1315.

    Article  MATH  MathSciNet  Google Scholar 

  • 1999 Nicely, T.R. Enumeration to 1.6 × 1015 of the prime quadruplets. Unveröffentlichtes Manuskript.

    Google Scholar 

  • 1999 Nicely, T.R. & Nyman, B. First occurrence of a prime gap of 1000 or greater. Unveröffentlichtes Manuskript.

    Google Scholar 

  • 2000 Bays, C. & Hudson, R.H. A new bound for the smallest x with \(\pi \left( x \right){\textrm{ > li}}\left( x \right)\). Math. Comp. 69 (2000), 1285–1296.

    Article  MATH  MathSciNet  Google Scholar 

  • 2000 Pinch, R.G.E. The pseudoprimes up to 1013. In Proc. Fourth Int. Symp. on Algorithmic Number Th. (Hrsg. W. Bosma). Lecture Notes in Computer Sci. #1838, 459–474. Springer-Verlag, New York 2000.

    Chapter  Google Scholar 

  • 2000 Shiu, D.K.L. Strings of congruent primes. J. London Math. Soc. (2) 61 (2000), 359–373.

    Google Scholar 

  • 2001 Baker, R.C., Harman, G. & Pintz, J. The difference between consecutive primes, II. Proc. London Math. Soc. (3) (83), 2001, 532–562.

    Google Scholar 

  • 2001 Gourdon, X. Computation of pi(x): improvements to the Meissel, Lehmer, Lagarias, Miller, Odlyzko, Deléglise and Rivat method. Unveröffentlichtes Manuskript.

    Google Scholar 

  • 2001 Nicely, T.R. A new error analysis for Brun’s constant. Virginia J. of Sci. 52 (2001), 45–55.

    MathSciNet  Google Scholar 

  • 2001 Odlyzko, A.M. The 1022-nd zero of the Riemann zeta function. In Dynamical, Spectral, and Arithmetic Zeta Functions (Hrsg. M.L. Lapidus und M. van Frankenhuysen), 139–144. Contemporary Math., Bd. 290, Amer. Math. Soc., Providence, RI 2001

    Google Scholar 

  • 2001 Richstein, J. Verifying the Goldbach conjecture up to 4 · 1014. Math. Comp. 70 (2001), 1745–1749.

    Article  MATH  MathSciNet  Google Scholar 

  • 2002 Dubner, H., Forbes, T., Lygeros, N., Mizony, M., Nelson, H. & Zimmermann, P. Ten consecutive primes in arithmetic progression. Math. Comp. 71 (2002), 1323–1328.

    Article  MATH  MathSciNet  Google Scholar 

  • 2002 Dusart, P. Sur la conjecture \(\pi \left( {x + y} \right) \le \pi \left( x \right) + \pi \left( y \right)\). Acta Arith. 102 (2002), 295–308.

    Article  MATH  MathSciNet  Google Scholar 

  • 2003 Nyman, B. & Nicely, T.R. New prime gaps between 1015 and \(5 \times 10^{16} \). J. Integer Seq. 6 (2003), Art. 03.3.1, 1–6 (elektronisch).

    Google Scholar 

  • 2003 Ramaré, O. & Saouter, Y. Short effective intervals containing primes. J. Number Theory 98 (2003), 10–33.

    Article  MATH  MathSciNet  Google Scholar 

  • 2004 Gourdon, X. The 1013 first zeros of the Riemann zeta function, and zeros computation at very large height. Unveröffentlichtes Manuskript.

    Google Scholar 

  • 2005 Kadiri, H. Une région explicite sans zéros pour la fonction zeta de Riemann. Acta Arith. 117 (2005), 303–339.

    Article  MATH  MathSciNet  Google Scholar 

  • 2006 Goldston, D.A., Motohashi, Y., Pintz, J. & Yıldırım, C.Y. Small gaps between primes exist. Proc. Japan Acad. Sci. A (Math. Sci.), 82 (2006), 61–65.

    Article  MATH  Google Scholar 

  • 2006 Pinch, R.G.E. The Carmichael numbers up to 1018. Preprint arXiv:math.NT/0604376, 2006.

    Google Scholar 

  • 2007 Pinch, R.G.E. The Carmichael Numbers up to 1021. In Proc. Conf. on Algorithmic Number Th. 2007 (Hrsg. A.-M. Ernvall-Hytönen, M. Jutila, J. Karhumäki und A. Lepistö), 129–131. Turku Centre for Computer Science, Turku 2007.

    Google Scholar 

  • 2008 Green, B. & Tao, T. The primes contain arbitrarily long arithmetic progressions. Annals of Math. (2) 167 (2008), 481–547.

    Google Scholar 

  • 2009 Goldston, D.A., Pintz, J. & Yıldırım, C.Y. Primes in tuples I. Annals of Math. 170 (2009), 819–862.

    Article  MATH  Google Scholar 

  • Gourdon, X. & Sebah, P. Anzahl von Primzahlen. http://numbers.computation.free.fr/Constants/Primes/countingPrimes.html

  • Oliveira e Silva, T. Anzahl von Primzahlen und Primzahlzwillingspaaren. http://www.ieeta.pt/~tos/primes.html

  • Wedeniwski, S. Verifikation der Riemannschen Vermutung. http://www.zetagrid.net/zeta/math/zeta.result.100billion.zeros.html

  • Nicely, T.R. Erstmalig auftretende Primzahllücken. http://www.trnicely.net/gaps/gaplist.html

  • Andersen, J.K. Bemerkenswerteste Primzahllücken. http://users.cybercity.dk/~dsl522332/math/primegaps/gaps20.htm

  • Caldwell, C. Die größten bekannten Primzahlzwillinge. http://primes.utm.edu/largest.html#twin

  • Nicely, T.R. Anzahl von Primzahldrillingen und Primzahlvierlingen. http://www.trnicely.net/counts.html

  • Forbes, T. Primzahlmehrlinge. http://anthony.d.forbes.googlepages.com/ktuplets.htm

  • Andersen, J.K. Primzahlreihen in arithmetischer Folge. http://users.cybercity.dk/~dsl522332/math/aprecords.htm

  • Oliveira e Silva, T. Verifikation der Goldbachschen Vermutung. http://www.ieeta.pt/~tos/goldbach.html

  • Feitsma, J. Anzahl von Pseudoprimzahlen. http://www.janfeitsma.nl/math/psp2/statistics

  • Pinch, R.G.E. Anzahl von Carmichael-Zahlen. http://www.chalcedon.demon.co.uk/rgep/carpsp.html

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribenboim, P. (2011). Wie sind die Primzahlen verteilt?. In: Die Welt der Primzahlen. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18079-8_4

Download citation

Publish with us

Policies and ethics