Simple Sets of Measurements for Universal Quantum Computation and Graph State Preparation

  • Yasuhiro Takahashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6519)


We show that the set of observables \(\{Z\otimes X, (\cos\theta) X + (\sin\theta) Y \ {\rm all} \ \theta \in [0,2\pi)\}\) with one ancillary qubit is universal for quantum computation. The set is simpler than a previous one in the sense that one-qubit projective measurements described by the observables in the set are ones only in the (X,Y) plane of the Bloch sphere. The proof of the universality implies a simple set of observables that is approximately universal for quantum computation. Moreover, it implies a simple set of observables for efficient graph state preparation.


Quantum Computation Graph State Quantum Circuit Simulation Step Correction Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raussendorf, R., Briegel, H.J.: A One-Way Quantum Computer. Phys. Rev. Lett. 86, 5188–5191 (2001)CrossRefGoogle Scholar
  2. 2.
    Nielsen, M.A.: Quantum Computation by Measurement and Quantum Memory. Phys. Lett. A 308, 96–100 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Perdrix, S.: State Transfer Instead of Teleportation in Measurement-Based Quantum Computation. International Journal of Quantum Information 3(1), 219–223 (2005)CrossRefGoogle Scholar
  4. 4.
    Childs, A.M., Leung, D.W., Nielsen, M.A.: Unified Derivation of Measurement-Based Schemes for Quantum Computation. Phys. Rev. A 71, 032318 (2005)CrossRefGoogle Scholar
  5. 5.
    Leung, D.W.: Quantum Computation by Measurements. International Journal of Quantum Information 2(1), 33–43 (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Jorrand, P., Perdrix, S.: Unifying Quantum Computation with Projective Measurements Only and One-Way Quantum Computation. In: SPIE Quantum Informatics 2004, vol. 5833, pp. 44–51 (2005)Google Scholar
  7. 7.
    Perdrix, S.: Towards Minimal Resources of Measurement-Based Quantum Computation. New Journal of Physics 9, 206 (2007)CrossRefGoogle Scholar
  8. 8.
    Høyer, P., Mhalla, M., Perdrix, S.: Resources Required for Preparing Graph States. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 638–649. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  10. 10.
    Danos, V., Kashefi, E., Panangaden, P.: Parsimonious and Robust Realizations of Unitary Maps in the One-Way Model. Phys. Rev. A 72, 064301 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yasuhiro Takahashi
    • 1
  1. 1.NTT Communication Science LaboratoriesNTT CorporationAtsugiJapan

Personalised recommendations