Teleportation of a Quantum State of a Spatial Mode with a Single Massive Particle

  • Libby Heaney
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6519)

Abstract

Mode entanglement exists naturally between regions of space in ultra-cold atomic gases. It has, however, been debated whether this type of entanglement is useful for quantum protocols. This is due to a particle number superselection rule that restricts the operations that can be performed on the modes. In this paper, we show how to exploit the mode entanglement of just a single particle for the teleportation of an unknown quantum state of a spatial mode. We detail how to overcome the superselection rule to create any initial quantum state and how to perform Bell state analysis on two of the modes. We show that two of the four Bell states can always be reliably distinguished, while the other two have to be grouped together due to an unsatisfied phase matching condition. The teleportation of an unknown state of a quantum mode thus only succeeds half of the time.

Keywords

Mode entanglement quantum teleportation superselection rule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen, M., Chuang, I.: Quantum information and quantum computation (2000)Google Scholar
  2. 2.
    Zanardi, P.: Phys. Rev. A 65, 042101 (2001)CrossRefGoogle Scholar
  3. 3.
    Tichy, M.C., de Melo, F., Kus, M., Mintert, F., Buchleitner, A., arXiv:0902.1684v5Google Scholar
  4. 4.
    Peres, A.: Phys. Rev. Lett. 74, 4571 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Tan, S.M., Walls, D.F., Collett, M.J.: Phys. Rev. Lett. 66, 252 (1991)CrossRefGoogle Scholar
  6. 6.
    van Enk, S.: Phys. Rev. A 72, 064306 (2006)CrossRefGoogle Scholar
  7. 7.
    Hardy, L.: Phys. Rev. Lett. 73, 2279 (1994)CrossRefGoogle Scholar
  8. 8.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Phys. Rev. Lett. 75, 2064 (1995)CrossRefGoogle Scholar
  9. 9.
    Dunningham, J., Vedral, V.: Phys. Rev. Lett. 99, 180404 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Heaney, L., Cabello, A., Santos, M.F., Vedral, V., arXiv:0911.0770v2Google Scholar
  11. 11.
    Hessmo, B., Usachev, P., Heydari, H., Björk, G.: Phys. Rev. Lett. 92, 180401 (2004)CrossRefGoogle Scholar
  12. 12.
    Papp, S.B., Choi, K.S., Deng, H., Lougovski, P., van Enk, S.J., Kimble, H.J.: Science 324, 764 (2009)CrossRefGoogle Scholar
  13. 13.
    Wiseman, H.M., Vaccaro, J.A.: Phys. Rev. Lett. 91, 097902 (2003)CrossRefGoogle Scholar
  14. 14.
    Wick, G.C., Wightman, A.S., Wigner, E.P.: Phys. Rev. 88, 101 (1952)CrossRefGoogle Scholar
  15. 15.
    Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the appearance of the classical world in quantum theory. Springer, Heidelberg (1996)CrossRefMATHGoogle Scholar
  16. 16.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Quantum Interferometry. In: DeMartini, F., et al. (eds.). VCH Publishers (1996)Google Scholar
  17. 17.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Rev. Mod. Phys. 79, 555 (2007)CrossRefGoogle Scholar
  18. 18.
    Aharonov, Y., Susskind, L.: Phys. Rev. 155, 1428 (1967)CrossRefGoogle Scholar
  19. 19.
    Mirman, R.: Phys. Rev. 186, 1380 (1969)CrossRefGoogle Scholar
  20. 20.
    Dowling, M.R., Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Phys. Rev. A 74, 052113 (2006)CrossRefGoogle Scholar
  21. 21.
    Recati, A., et al.: Phys. Rev. Lett. 94, 040404 (2005)CrossRefGoogle Scholar
  22. 22.
    Terra Cunha, M.O., Dunningham, J.A., Vedral, V.: Proc. Royal Soc., A 463, 2277 (2007)CrossRefGoogle Scholar
  23. 23.
    Ashhab, S., Maruyama, K., Nori, F.: Phys. Rev. A 75, 022108 (2007)CrossRefGoogle Scholar
  24. 24.
    Heaney, L., Anders, J.: Phys. Rev. A 80, 032104 (2009)CrossRefGoogle Scholar
  25. 25.
    Ashhab, S., Maruyama, K., Brukner, Č., Nori, F.: Phys. Rev. A 80, 062106 (2009)CrossRefGoogle Scholar
  26. 26.
    Heaney, L., Lee, S.-.W., Jaksch, D.: Phys. Rev. A 82, 042116 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Simon, C.: Phys. Rev. A 66, 052323 (2002)CrossRefGoogle Scholar
  28. 28.
    Anders, J., Kaszlikowski, D., Lunkes, C., Ohshima, T., Vedral, V.: N. J. Phys. 8, 140 (2006)CrossRefGoogle Scholar
  29. 29.
    Heaney, L., Anders, J., Kaszlikowski, D., Vedral, V.: Phys. Rev. A 76, 053605 (2007)CrossRefGoogle Scholar
  30. 30.
    Heaney, L.: PhD thesis, University of Leeds (2008)Google Scholar
  31. 31.
    Goold, J., Heaney, L., Busch, T., Vedral, V.: Phys. Rev. A 80, 22338 (2009)CrossRefGoogle Scholar
  32. 32.
    Heaney, L., Vedral, V.: Phys. Rev. Lett. 103, 200502 (2009)CrossRefGoogle Scholar
  33. 33.
    Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Phys. Rev. Lett. 70, 1895 (1993)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Bouwmeester, D., Pan, J.M., Mattle, K., Eible, M., Weinfurter, H., Zeilinger, A.: Nature (London) 390, 575 (1997)CrossRefGoogle Scholar
  36. 36.
    Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Science 282, 706 (1998)CrossRefGoogle Scholar
  37. 37.
    Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Phys. Rev. Lett. 80, 1121 (1998)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lombardi, E., Sciarrino, F., Popescu, S., De Martini, F.: Phys. Rev. Lett. 88, 070402 (2002)CrossRefGoogle Scholar
  39. 39.
    Aharonov, Y., Vaidman, L.: Phys. Rev. A 61, 052108 (2000)CrossRefGoogle Scholar
  40. 40.
    Estéve, J., Gross, C., Weller, A., Giovanazzi, S., Oberthaler, M.K.: Nature 455, 1216 (2008)CrossRefGoogle Scholar
  41. 41.
    Vedral, V.: Cent. Euro. J. Phys. 2, 289 (2003)Google Scholar
  42. 42.
    Tóth, G., Simon, C., Cirac, J.I.: Phys. Rev. A 68, 062310 (2003)CrossRefGoogle Scholar
  43. 43.
    Pitaevskii, L., Stringari, G.: Bose-Einstein condensation. Springer, Heidelberg (2003)MATHGoogle Scholar
  44. 44.
    Bloch, I., Hänsch, T.W., Esslinger, T.: Nature 403, 166 (2000)CrossRefGoogle Scholar
  45. 45.
    Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B.: Nature Physics 6, 462 (2010)CrossRefGoogle Scholar
  46. 46.
    Jaksch, D., Zoller, P.: Annals of Physics 315, 52 (2005)CrossRefGoogle Scholar
  47. 47.
    Lee, H.-J., Byczuk, K., Bulla, R.: Phys. Rev. B 82, 054516 (2010)CrossRefGoogle Scholar
  48. 48.
    Note that controlling the phase of a BEC in this way is known as phase imprinting; see e.g. [51]Google Scholar
  49. 49.
    Sachdev, S.: Quantum phase transitions. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  50. 50.
    Clark, S., Moura Alves, C., Jaksch, D.: N. J. Phys. 7, 124 (2005)CrossRefGoogle Scholar
  51. 51.
    Denschlag, J., et al.: Science 287, 97 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Libby Heaney
    • 1
  1. 1.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations