Monogamy of Multi-qubit Entanglement in Terms of Rényi and Tsallis Entropies

  • Jeong San Kim
  • Barry C. Sanders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6519)

Abstract

We summarize our recent result about monogamy of multi-qubit entanglement: Using Rényi-α entropy, we provide a class of monogamy inequalities of multi-qubit entanglement for α ≥ 2. We also provide another class of monogamy inequalities in terms of Tsallis-q entropy for 2 ≤ q ≤ 3.

Keywords

Rényi entropy Tsallis entropy monogamy of entanglement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coffman, V., Kundu, J., Wootters, W.K.: Phys. Rev. 61, 052306 (2000)CrossRefGoogle Scholar
  2. 2.
    Osborne, V., Verstraete, F.: Phys. Rev. Lett. 96, 220503 (2006)CrossRefGoogle Scholar
  3. 3.
    Koashi, M., Winter, A.: Phys. Rev. A 69, 022309 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Terhal, B.M.: IBM J. Research and Development 48, 71 (2004)CrossRefGoogle Scholar
  5. 5.
    Renes, J.M., Grassl, M.: Phys. Rev. A 74, 022317 (2006)CrossRefGoogle Scholar
  6. 6.
    Masanes, L.: Phys. Rev. Lett. 102, 140501 (2009)CrossRefGoogle Scholar
  7. 7.
    Kim, J.S., Das, A., Sanders, B.C.: Phys. Rev. A 79, 012329 (2009)CrossRefGoogle Scholar
  8. 8.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)CrossRefGoogle Scholar
  9. 9.
    Ou, Y.C.: Phys. Rev. A 75, 034305 (2007)CrossRefGoogle Scholar
  10. 10.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Phys. Rev. A 54, 3824 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rényi, A.: Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, p. 547. Berkeley University Press, Berkeley (1960)Google Scholar
  12. 12.
    Shannon, C.E.: The Bell System Technical Journal 30, 50–64 (1951)CrossRefGoogle Scholar
  13. 13.
    Bovino, F.A., Castagnoli, G., Ekert, A., Horodecki, P., Alves, C.M., Sergienko, A.V.: Phys. Rev. Lett. 95, 240407 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Terhal, B.M.: J. Theor. Comp. Sci. 287, 313 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lévay, P., Nagy, S., Pipek, J.: Phys. Rev. A 72, 022302 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Horodecki, R., Horodecki, P., Horodecki, M.: Phys. Lett. A 210, 377 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Vidal, G.: J. Mod. Opt. 47, 355 (2000)CrossRefGoogle Scholar
  18. 18.
    Kim, J.S., Sanders, B.C.: Journal of Physics A: Mathematical and Theoretical 43(44), 442305 (2010)CrossRefGoogle Scholar
  19. 19.
    Kim, J.S.: Phys. Rev. A 81, 062328 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dür, W., Vidal, G., Cirac, J.I.: Phys. Rev. A 62, 062314 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Osterloh, A., Siewert, J.: Phys. Rev. A 72, 012337 (2005)CrossRefGoogle Scholar
  22. 22.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. In: Kafatos, M. (ed.), p. 69. Kluwer, Dordrecht (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jeong San Kim
    • 1
  • Barry C. Sanders
    • 1
  1. 1.Institute for Quantum Information ScienceUniversity of CalgaryAlbertaCanada

Personalised recommendations