A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem

  • Mario Berta
  • Matthias Christandl
  • Renato Renner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6519)


The Quantum Reverse Shannon Theorem states that any quantum channel can be simulated by an unlimited amount of shared entanglement and an amount of classical communication equal to the channel’s entanglement assisted classical capacity. In this extended abstract, we summarize a new and conceptually simple proof of this theorem [journal reference: arXiv.org:quant-ph/0912.3805], which has previously been proved in [Bennett et al., arXiv.org:quant-ph/0912.5537]. Our proof is based on optimal one-shot Quantum State Merging and the Post-Selection Technique for quantum channels.


Mutual Information Entangle State Quantum Channel Classical Communication Classical Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: The mother of all protocols: Restructuring quantum information’s family tree. Proc. R. Soc. A 465(2108), 2537 (2009), arXiv.org:quant-ph/0606225MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Devetak, I., Harrow, A.W., Shor, P.W., Winter, A.: The quantum reverse Shannon theorem (2006), arXiv.org:quant-ph/0912.5537Google Scholar
  3. 3.
    Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48(10), 2637 (2002), arXiv.org:quant-ph/0106052MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Berta, M.: Single-shot quantum state merging, Diploma thesis ETH Zurich (2008), arXiv.org:quant-ph/0912.4495 Google Scholar
  5. 5.
    Berta, M., Christandl, M., Renner, R.: A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem (2009), arXiv.org:quant-ph/0912.3805, submitted to Comm. Math. Phys. (2009)Google Scholar
  6. 6.
    Berta, M., Dupuis, F., Renner, R., Wullschleger, J.: Optimal decoupling (2010) (in preparation)Google Scholar
  7. 7.
    Christandl, M., König, R., Renner, R.: Post-selection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett 102, 20504 (2009), arXiv.org:quant-ph/0809.3019CrossRefGoogle Scholar
  8. 8.
    Datta, N.: Min- and max- relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816 (2009), arXiv.org:quant-ph/0803.2770MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Devetak, I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51, 44 (2005), arXiv:quant-ph/0304127MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dupuis, F.: The Decoupling Approach to Quantum Information Theory. PhD thesis, Université de Montréal (2009), arXiv.org:quant-ph/1004.1641Google Scholar
  11. 11.
    Harrow, A.W.: Entanglement spread and clean resource inequalities. Proc. XVI Int. Cong. Math. Phys. 536 (2009), arXiv.org:quant-ph/0909.1557Google Scholar
  12. 12.
    Holevo, A.S.: The capacity of the quantum communication channel with general signal states. IEEE Trans. Inf. Theory 44, 269 (1998), arXiv.org:quant-ph/9611023CrossRefMATHGoogle Scholar
  13. 13.
    Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673–676 (2005), arXiv.org:quant-ph/0505062CrossRefGoogle Scholar
  14. 14.
    Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm. Math. Phys 269, 107 (2006), arXiv.org:quant-ph/0512247MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kitaev, A.: Quantum computations: algorithms and error correction. Russian Math. Surveys 52, 1191 (1997)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337 (2009), arXiv.org:quant-ph/0807.1338MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613 (1997), arXiv.org:quant-ph/9604015MathSciNetCrossRefGoogle Scholar
  18. 18.
    Oppenheim, J.: State redistribution as merging: introducing the coherent relay (2008), arXiv.org:quant-ph/0805.1065 Google Scholar
  19. 19.
    Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zurich (2005), arXiv.org:quant-ph/0512258 Google Scholar
  20. 20.
    Renner, R.S., König, R.: Universally Composable Privacy Amplification Against Quantum Adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Renner, R., Wolf, S.: Smooth Rényi entropy and applications. In: Proc. IEEE Int. Symp. Inf. Theory, vol. 233 (2004)Google Scholar
  22. 22.
    Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131 (1997)CrossRefGoogle Scholar
  23. 23.
    Shannon, C.E.: A mathematical theory of communication. Bell. Syst. Tech. J. 423, 379–423, 623–656 (1948)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Shor, P.W.: The quantum channel capacity and coherent information. In: Lecture notes, MSRI Workshop on Quantum Computation (2002)Google Scholar
  25. 25.
    Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19, 461 (1971)MathSciNetMATHGoogle Scholar
  26. 26.
    Stinespring, W.: Positive function on C*-algebras. Proc. Amer. Math. Soc. 6, 211 (1955)MathSciNetMATHGoogle Scholar
  27. 27.
    Tomamichel, M., Colbeck, R., Renner, R.: A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55(12), 5840 (2009), arXiv.org:quant-ph/0811.1221MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Tomamichel, M., Colbeck, R., Renner, R.: Duality between smooth min- and max-entropies. IEEE Trans. Inf. Theory 56(9), 4674 (2010), arXiv.org:quant-ph/0907.5238MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    van Dam, W., Hayden, P.: Universal entanglement transformations without communication. Phys. Rev. A, Rapid Comm. 67, 060302(R) (2003), arXiv.org:quant-ph/0201041MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mario Berta
    • 1
    • 2
  • Matthias Christandl
    • 1
    • 2
  • Renato Renner
    • 1
  1. 1.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  2. 2.Faculty of PhysicsLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations