Asymptotically Optimal Discrimination between Pure Quantum States

  • Michael Nussbaum
  • Arleta Szkoła
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6519)

Abstract

We consider the decision problem between a finite number of states of a finite quantum system, when an arbitrarily large number of copies of the system is available for measurements. We provide an upper bound on the exponential rate of decay of the averaged probability of rejecting the true state. It represents a generalized quantum Chernoff distance of a finite set of states. As our main result we prove that the bound is sharp in the case of pure states.

Keywords

multiple quantum state discrimination generalized quantum Chernoff distance quantum hypothesis testing error exponents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audenaert, K.M.R., Casamiglia, J., Munoz-Tapia, R., Bagan, E., Masanes, L.l., Acin, A., Verstraete, F.: Discriminating States: The Quantum Chernoff Bound. Phys. Rev. Lett. 98, 160501 (2007)CrossRefGoogle Scholar
  2. 2.
    Audenaert, K.M.R., Nussbaum, M., Szkoła, A., Verstraete, F.: Asymptotic Error Rates in Quantum Hypothesis Testing. Commun. Math. Phys. 279, 251–283 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barett, S., Croke, S.: On the conditions for discrimination between quantum states with minimum error. J. Phys. A: Math. Theor. 42 (2009)Google Scholar
  4. 4.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)MATHGoogle Scholar
  5. 5.
    Holevo, A.: Investigations in the general theory of statistical decisions. Trudy Mat. Inst. Steklov 124 (in Russian) (English translation in Proc. Steklov Inst. of Math. 3. Amer. Math. Soc., Providence) (1978)Google Scholar
  6. 6.
    Kholevo, A.: On asymptotically optimal hypothesis testing in quantum statistics. Theor. Probab. Appl. 23, 411–415 (1978)CrossRefGoogle Scholar
  7. 7.
    König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Th. 55(9) (2009)Google Scholar
  8. 8.
    Nussbaum, M., Szkoła, A.: The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Stat. 37(2), 1040–1057 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Salikhov, N.P.: On one generalisation of Chernov’s distance. Theory Probab. Appl. 43(2), 239–255 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Tyson, J.: Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds. J. Math. Phys. 50, 32106 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of Multiple Hypotheses in Quantum Detection Theory. IEEE Trans. Inform. Thoery IT-21(2), 125–134 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Nussbaum
    • 1
  • Arleta Szkoła
    • 2
  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations