Skip to main content

Modelling conditional heteroscedasticity in nonstationary series

  • Chapter
  • First Online:
Statistical Tools for Finance and Insurance

Abstract

A vast amount of econometrical and statistical research deals with modeling financial time series and their volatility, which measures the dispersion of a series at a point in time (i.e., conditional variance). Although financial markets have been experiencing many shorter and longer periods of instability or uncertainty in last decades such as Asian crisis (1997), start of the European currency (1999), the “dot-Com” technology-bubble crash (2000–2002) or the terrorist attacks (September, 2001), the war in Iraq (2003) and the current global recession (2008–2009), mostly used econometric models are based on the assumption of stationarity and time homogeneity; in other words, structure and parameters of a model are supposed to be constant over time. This includes linear and nonlinear autoregressive (AR) and moving-average models and conditional heteroscedasticity (CH) models such as ARCH (Engel, 1982) and GARCH (Bollerslev, 1986), stochastic volatility models (Taylor, 1986), as well as their combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Andersen, T. G. and Bollerslev, T. (1998). Answering the skeptics: yes, standard volatility models do provide accurate forecasts, International Economic Review 39, 885–905.

    Article  Google Scholar 

  • Andreou, E. and Ghysels, E. (2002). Detecting multiple breaks in financial market volatility dynamics, Journal of Applied Econometrics 17, 579– 600.

    Article  Google Scholar 

  • Andreou, E. and Ghysels, E. (2006). Monitoring disruptions in financial markets, Journal of Econometrics 135, 77–124.

    Article  MathSciNet  Google Scholar 

  • Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point, Econometrica 61, 821–856.

    Article  MATH  MathSciNet  Google Scholar 

  • Andrews, D. W. K. (2003). End-of-sample instability tests, Econometrica 71, 1661–1694.

    Article  MATH  MathSciNet  Google Scholar 

  • Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural changes, Econometrica 66, 47–78.

    Article  MATH  MathSciNet  Google Scholar 

  • Beltratti, A. and Morana, C. (2004). Structural change and long-range dependence in volatility of exchange rates: either, neither or both?, Journal of Empirical Finance 11, 629–658.

    Article  Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31, 307–327.

    Article  MATH  MathSciNet  Google Scholar 

  • Cai, Z., Fan, J. and Yao, Q. (2000). Functional coefficient regression models for nonlinear time series, Journal of the American Statistical Association 95, 941–956.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, G., Choi, Y. K., and Zhou, Y. (2010). Nonparametric estimation of structural change points in volatility models for time series, Journal of Econometrics 126, 79–114.

    Article  MathSciNet  Google Scholar 

  • Chen, J. and Gupta, A. K. (1997). Testing and locating variance changepoints with application to stock prices, Journal of the American Statistical As-sociation 92, 739–747.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, R. and Tsay, R. J. (1993). Functional-coefficient autoregressive models, Journal of the American Statistical Association 88, 298–308.

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng, M.-Y., Fan, J. and Spokoiny, V. (2003). Dynamic nonparametric filtering with application to volatility estimation, in M. G. Akritas and D. N. Politis (eds.), Recent Advances and Trends in Nonparametric Statistics, Elsevier, North-Holland, pp. 315–333.

    Google Scholar 

  • Č´ížek, P., H¨ardle, W. and Spokoiny, V. (2009). Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models, The Econometrics Journal 12, 248–271.

    Google Scholar 

  • Dahlhaus, R. and Subba Rao, S. (2006). Statistical inference for time-varying ARCH processes, The Annals of Statistics 34, 1075–1114.

    Article  MATH  MathSciNet  Google Scholar 

  • Diebold, F. X. and Inoue, A. (2001). Long memory and regime switching, Journal of Econometrics 105, 131–159.

    Article  MATH  MathSciNet  Google Scholar 

  • Eizaguirre, J. C., Biscarri, J. G., and Hidalgo, F. P. G. (2010). Structural term changes in volatility and stock market development: evidence for Spain, Journal of Banking & Finance 28, 1745–1773.

    Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50, 987–1008.

    Article  MATH  MathSciNet  Google Scholar 

  • Fan, J. and Zhang, W. (2008). Statistical models with varying coefficient models, Statistics and Its Interface 1, 179–195.

    MATH  MathSciNet  Google Scholar 

  • Francq, C. and Zakoian, J.-M. (2007). Quasi-maximum likelihood estimation in GARCH processes when some coefficients are equal to zero, Stochastic Processes and their Applications 117, 1265–1284.

    Article  MATH  MathSciNet  Google Scholar 

  • Fryzlewicz, P., Sapatinas, T., and Subba Rao, S. (2008). Normalised leastsquares estimation in time-varying ARCH models, Annals of Statistics 36, 742–786.

    Article  MATH  MathSciNet  Google Scholar 

  • Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance 48, 1779–1801.

    Article  Google Scholar 

  • Hansen, B. and Lee, S.-W. (1994). Asymptotic theory for the GARCH(1,1) quasi-maximum likelihood estimator, Econometric Theory 10, 29–53.

    Article  MathSciNet  Google Scholar 

  • Härdle, W., Herwatz, H. and Spokoiny, V. (2003). Time inhomogeneous multiple volatility modelling, Journal of Financial Econometrics 1, 55–99.

    Google Scholar 

  • Herwatz, H. and Reimers, H. E. (2001). Empirical modeling of the DEM/USD and DEM/JPY foreign exchange rate: structural shifts in GARCH-models and their implications, SFB 373 Discussion Paper 2001/83, Humboldt- Univerzit¨at zu Berlin, Germany.

    Google Scholar 

  • Hillebrand, E. (2005). Neglecting parameter changes in GARCH models, Journal of Econometrics 129, 121–138.

    Article  MathSciNet  Google Scholar 

  • Kokoszka, P. and Leipus, R. (2000). Change-point estimation in ARCH models, Bernoulli 6, 513–539.

    Article  MATH  MathSciNet  Google Scholar 

  • Mercurio, D. and Spokoiny, V. (2004). Statistical inference for timeinhomogeneous volatility models, The Annals of Statistics 32, 577–602.

    Article  MATH  MathSciNet  Google Scholar 

  • Mikosch, T. and Starica, C. (2004). Changes of structure in financial time series and the GARCH model, Revstat Statistical Journal 2, 41–73.

    MATH  MathSciNet  Google Scholar 

  • Morales-Zumaquero, A., and Sosvilla-Rivero, S. (2010). Structural breaks in volatility: evidence for the OECD and non-OECD real exchange rates, Journal of International Money and Finance 29, 139–168.

    Article  Google Scholar 

  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach, Econometrica 59, 347–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Pesaran, M. H. and A. Timmermann (2004). How costly is it to ignore breaks when forecasting the direction of a time series?, International Journal of Forecasting 20, 411–425.

    Article  Google Scholar 

  • Polzehl, J. and Spokoiny, V. (2000). Adaptive weights smoothing with applications to image restoration, Journal of the Royal Statistical Society, Ser. B 62, 335–354.

    MathSciNet  Google Scholar 

  • Polzehl, J. and Spokoiny, V. (2003). Varying coefficient regression modelling by adaptive weights smoothing, Preprint No. 818, WIAS, Berlin, Germany. Sentana, E. (1995). Quadratic ARCH Models, The Review of Economic Studies 62, 639–661.

    Article  Google Scholar 

  • Spokoiny, V. (1998). Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice, Annals of Statistics 26, 1356–1378.

    Article  MATH  MathSciNet  Google Scholar 

  • Spokoiny, V. (2009). Multiscale local change-point detection with applications to Value-at-Risk, Annals of Statistics 37, 1405–1436.

    Article  MATH  MathSciNet  Google Scholar 

  • Starica, C., and Granger, C. (2005) Nonstationarities in stock returns, The Review of Economics and Statistics 87, 503–522.

    Article  Google Scholar 

  • Taylor, S. J. (1986). Modeling financial time series, Chichester: Wiley.

    Google Scholar 

  • Xu, K.-L., and Phillips, P. C. B. (2008). Adaptive estimation of autoregressive models with time-varying variances, Journal of Econometrics 142, 265– 280.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Čížek, P. (2011). Modelling conditional heteroscedasticity in nonstationary series. In: Cizek, P., Härdle, W., Weron, R. (eds) Statistical Tools for Finance and Insurance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18062-0_3

Download citation

Publish with us

Policies and ethics