Preparation of the Analysis

  • Armando Luis Vieira
Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)


This chapter describes the SEM analysis preparation procedures, including the choice of the input matrix and estimation technique, the selection of goodness-of-fit-indices, as well as a step-by-step, annotated illustration of how to conduct normality tests.


Data screening Estimation technique Goodness-of-fit indices Input matrix Level of abstraction Two-step approach 


  1. J.C. Anderson, D.W. Gerbing, Structural equation modeling in practice: a review and recommended two-step approach. Psychol. Bull. 103(3), 411–423 (1988)CrossRefGoogle Scholar
  2. E. Anderson, L.M. Lodish, B. Weitz, Resource allocation behavior in conventional channels. J. Market. Res. 24(1), 85–97 (1987)CrossRefGoogle Scholar
  3. R.P. Bagozzi, T.F. Heatherton, A general approach to representing multifaceted personality constructs: application to state self -esteem. Struct. Equ. Model. 1(1), 35–67 (1994)CrossRefGoogle Scholar
  4. R.P. Bagozzi, Y. Yi, On the evaluation of structural equation models. J. Acad. Market. Sci. 16, 74–94 (1988)CrossRefGoogle Scholar
  5. J. Barnes, J. Cote, R. Cudeck, E. Malthouse, Factor analysis—checking assumptions of normality before conducting factor analysis. J. Consum. Psychol. 10(1,2), 79–81 (2001)Google Scholar
  6. H. Baumgartner, C. Homburg, Applications of structural equation modeling in marketing and consumer research: a review. Int. J. Res. Mark. 13, 139–161 (1996)CrossRefGoogle Scholar
  7. J. Benson, D.L. Bandalos, Second-order confirmatory factor analysis of the reactions to tests scale with cross-validation. Multivar. Behav. Res. 27(3), 459–487 (1992)CrossRefGoogle Scholar
  8. P. Bentler, R.P. Bagozzi, R. Cudeck, D. Iacobucci, Structural equation modeling—SEM using correlation or covariance matrices. J. Consum. Psychol. 10(1,2), 85–87 (2001)Google Scholar
  9. K.A. Bollen, Structural equations with latent variables (Wiley, New York, 1989)MATHGoogle Scholar
  10. G. Churchill, Marketing Research: Methodological Foundations (Dryden Press, Orlando, 1999)Google Scholar
  11. J. Cortina, G. Chen, W. Dunlap, Testing interaction effects in LISREL: examination and illustration of available procedures. Org. Res. Methods 4(4), 324–360 (2001)CrossRefGoogle Scholar
  12. J. Cote, R. Netemeyer, P. Bentler, Structural equation modeling—improving model fit by correlating errors. J. Consum. Psychol. 10(1, 2), 87–88 (2001)Google Scholar
  13. A. Diamantopoulos, J. Siguaw, Introducing LISREL (SAGE, London, 2000)Google Scholar
  14. W.R. Dillon, R.P. McDonald, D. Iacobucci, Measurement—how to combine multiple items into a composite measure. in ed. by D. Iacobucci J. Consum. Psychol. 10(1&2), pp. 55–59 (2001)Google Scholar
  15. M. Du Toit, S. Du Toit Interactive LISREL: User’s Guide. (Scientific Software International, Lincolnwood, 2001)Google Scholar
  16. J. Gassenheimer, J.D. Davis, R. Dahlstrom, Is dependent what we want to be? J. Retail. 74(2), 247–271 (1998)CrossRefGoogle Scholar
  17. T. Grapentine, Dimensions of an attribute. Market. Res. 7(3), 19–27 (1995)Google Scholar
  18. P.E. Green, D.T. Tull, G. Albaum, Research for Marketing Decisions, 5th edn. (Prentice Hall, New Jersey, 1988)MATHGoogle Scholar
  19. J. Hair, R. Anderson, R. Tatham, W. Black, Multivariate Data Analysis, 5th edn. (Prentice Hall International, London, 1998)Google Scholar
  20. J.E. Hunter, D.W. Gerbing in Unidimensional Measurement, Second-Order Factor Analysis, and Causal Models ed. by B.M. Staw, L.L. Cummings. Research in Organizational Behavior (JAI Press, Greenwich, 1982)Google Scholar
  21. K. Jöreskog, D. Sörbom, PRELIS 2: User’s Reference Guide (Scientific Software International, Lincolnwood, 2002)Google Scholar
  22. K. Jöreskog, D. Sörbom, S. Du Toit, M. Du Toit, LISREL 8: New Statistical Features (Scientific Software International, Lincolnwood, 2001)Google Scholar
  23. T. Kinnear, J. Taylor, Marketing Research: An Applied Approach (McGraw-Hill, New York, 1991)Google Scholar
  24. R.C. MacCallum, M.W. Browne, H.M. Sugawara, Power analysis and determination of sample size for covariance structure modeling. Psychol. Methods 1(2), 130–149 (1996)CrossRefGoogle Scholar
  25. N.K. Malhotra, Marketing Research: An Applied Orientation (Prentice Hall, New Jersey, 1996)Google Scholar
  26. Ping Jr, RA On assuring valid measures for theoretical models using survey data. J. Bus. Res. 57, 125–141 (2004)CrossRefGoogle Scholar
  27. D. Powers, Y. Xie, Statistical Methods for Categorical Data Analysis (Academic Press, London, 2000)Google Scholar
  28. J. Steenkamp, H. van Trijp, The use of LISREL in validating marketing constructs. Int J Res Mark 8, 283–299 (1991)CrossRefGoogle Scholar
  29. D.L. Streiner, The case of the missing data: methods of dealing with dropouts and other research Vagaries. Can. J. Psychiatr. 47(1), 70–77 (2002)Google Scholar
  30. P. Von Hippel, Biases in SPSS 12.0 missing value analysis. Am. Stat. 58(2), 160–164 (2004)CrossRefGoogle Scholar

Copyright information

© Armando Luis Vieira 2011

Authors and Affiliations

  1. 1.University of AveirAveiroPortugal

Personalised recommendations