Skip to main content

Semantics Based on Conceptual Spaces

  • Conference paper
Logic and Its Applications (ICLA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6521))

Included in the following conference series:

Abstract

The overall goal is to show that conceptual spaces are more promising than other ways of modelling the semantics of natural language. In particular, I will show how they can be used to model actions and events. I will also outline how conceptual spaces provide a cognitive grounding for word classes, including nouns, adjectives, prepositions and verbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berlin, B., Kay, P.: Basic Color Terms: Their Universality and Evolution. University of California Press, Berkeley (1969)

    Google Scholar 

  2. Edelman, S.: Representation and Recognition in Vision. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Gärdenfors, P.: Induction, conceptual spaces and AI. Philosophy of Science 57, 78–95 (1990)

    Article  MathSciNet  Google Scholar 

  4. Gärdenfors, P.: Conceptual spaces as a basis for cognitive semantics. In: Clark, A., et al. (eds.) Philosophy and Cognitive Science, pp. 159–180. Kluwer, Dordrecht (1996)

    Google Scholar 

  5. Gärdenfors, P.: Does semantics need reality?. In: Does Representation Need Reality? Proceedings of the International Conference New Trends in Cognitive Science, Austrian Society of Cognitive Science Technical Report 97-01, Vienna, pp. 113–120 (1997)

    Google Scholar 

  6. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2000)

    Google Scholar 

  7. Gärdenfors, P.: Representing actions and functional properties in conceptual spaces. In: Ziemke, T., Zlatev, J., Frank, R.M. (eds.) Body, Language and Mind. Embodiment, vol. 1, pp. 167–195. Mouton de Gruyter, Berlin (2007)

    Google Scholar 

  8. Gärdenfors, P., Warglien, M.: Using conceptual spaces to model actions and events. Manuscript (submitted)

    Google Scholar 

  9. Garner, W.R.: The Processing of Information and Structure. Erlbaum, Potomac (1974)

    Google Scholar 

  10. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  11. Hemeren, P.E.: Frequency, ordinal position and semantic distance as measures of cross-cultural stability and hierarchies for action verbs. Acta Psychologica 91, 39–66 (1996)

    Article  Google Scholar 

  12. Hemeren, P.E.: Typicality and context effects in action categories. In: Proceedings of the 19th Annual Conference of the Cognitive Science Society, p. 949. Lawrence Erlbaum Associates, Stanford (1997)

    Google Scholar 

  13. Hemeren, P.E.: Mind in Action. Lund University Cognitive Studies 140, Lund (2008)

    Google Scholar 

  14. Herskovits, A.: Language and Spatial Cognition: An Interdisciplinary Study of the Prepositions in English. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  15. Holmqvist, K.: Implementing Cognitive Semantics. Lund University Cognitive Studies 17, Lund (1993)

    Google Scholar 

  16. Jackendoff, R.: Semantics and Cognition. MIT Press, Cambridge (1983)

    Google Scholar 

  17. Jäger, G.: Natural colour categories are convex sets. In: Aloni, M., Bastiaanse, H., de Jager, T., Schulz, K. (eds.) Logic, Language and Meaning. LNCS (LNAI), vol. 6042, pp. 11–20. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Johansson, G.: Visual perception of biological motion and a model for its analysis. Perception and Psychophysics 14, 201–211 (1973)

    Article  Google Scholar 

  19. Lakoff, G.: Women, Fire, and Dangerous Things. The University of Chicago Press, Chicago (1987)

    Book  Google Scholar 

  20. Landau, B., Jackendoff, R.: “What” and “where” in spatial language and spatial cognition. Behavioral and Brain Sciences 16, 217–238 (1993)

    Article  Google Scholar 

  21. Langacker, R.W.: Foundations of Cognitive Grammar. Theoretical Prerequisites, vol. I. Stanford University Press, Stanford (1987)

    Google Scholar 

  22. Maddox, W.T.: Perceptual and decisional separability. In: Ashby, G.F. (ed.) Multidimensional Models of Perception and Cognition, pp. 147–180. Lawrence Erlbaum, Hillsdale (1992)

    Google Scholar 

  23. Marr, D., Nishihara, H.K.: Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society in London B 200, 269–294 (1978)

    Article  Google Scholar 

  24. Marr, D., Vaina, L.: Representation and recognition of the movements of shapes. Proceedings of the Royal Society in London B 214, 501–524 (1982)

    Article  Google Scholar 

  25. Melara, R.D.: The concept of perceptual similarity: from psychophysics to cognitive psychology. In: Algom, D. (ed.) Psychophysical Approaches to Cognition, pp. 303–388. Elsevier, Amsterdam (1992)

    Chapter  Google Scholar 

  26. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first ontology, Stanford Knowledge Systems Laboratory Technical Report, Stanford, CA (2001)

    Google Scholar 

  27. Rosch, E.: Cognitive representations of semantic categories. Journal of Experimental Psychology: General 104, 192–233 (1975)

    Article  Google Scholar 

  28. Runesson, S.: Perception of biological motion: The KSD-principle and the implications of a distal versus proximal approach. In: Jansson, G., Bergström, S.-S., Epstein, W. (eds.) Perceiving Evens and Objects, pp. 383–405. Lawrence Erlbaum Associates, Hillsdale (1994)

    Google Scholar 

  29. Runesson, S., Frykholm, G.: Visual perception of lifted weights. Journal of Experimental Psychology: Human Perception and Performance 7, 733–740 (1981)

    Google Scholar 

  30. Runesson, S., Frykholm, G.: Kinematic specification of dynamics as an informational basis for person and action perception. Expectation, gender recognition, and deceptive intention. Journal of Experimental Psychology: General 112, 585–615 (1983)

    Google Scholar 

  31. Sivik, L., Taft, C.: Color naming: a mapping in the NCS of common color terms. Scandinavian Journal of Psychology 35, 144–164 (1994)

    Article  Google Scholar 

  32. Smith, L.: From global similarities to kinds of similarities – the construction of dimensions in development. In: Vosniadou, S., Ortony, A. (eds.) Similarity and Analogical Reasoning, pp. 146–178. Cambridge University Press, Cambridge (1989)

    Chapter  Google Scholar 

  33. Smith, E.E., Osherson, D.N., Rips, L.J., Keane, M.: Combining prototypes: a selective modification model. Cognitive Science 12, 485–527 (1988)

    Article  Google Scholar 

  34. Talmy, L.: Force dynamics in language and cognition. Cognitive Science 12, 49–100 (1988)

    Article  Google Scholar 

  35. Vaina, L.: From shapes and movements to objects and actions. Synthese 54, 3–36 (1983)

    Article  Google Scholar 

  36. Vaina, L., Bennour, Y.: A computational approach to visual recognition of arm movement. Perceptual and Motor Skills 60, 203–228 (1985)

    Article  Google Scholar 

  37. Warglien, M., Gärdenfors, P.: Semantics, conceptual spaces and the meeting of minds. Manuscript (submitted)

    Google Scholar 

  38. Zwarts, J.: The semantics of relative position. In: Proceedings of Semantics and Linguistic Theory, vol. 5, pp. 405–422 (1995)

    Google Scholar 

  39. Zwarts, J.: Forceful prepositions. In: Evans, V., Chilton, P. (eds.) Language, Cognition and Space: The State of the Art and New Directions. Equinox Publishing (to appear)

    Google Scholar 

  40. Zwarts, J., Winter, Y.: Vector Space Semantics: A model-theoretic analysis of locative prepositions. Journal of Logic, Language and Information 9, 169–211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gärdenfors, P. (2011). Semantics Based on Conceptual Spaces. In: Banerjee, M., Seth, A. (eds) Logic and Its Applications. ICLA 2011. Lecture Notes in Computer Science(), vol 6521. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18026-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18026-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18025-5

  • Online ISBN: 978-3-642-18026-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics