Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1519 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 169))

Abstract

The properties of impurities and defects are treated globally in textbooks dealing with the physical properties of semiconductors (for instance, [1] or [2]). An overview on the optical measurements on point defects in semiconductors is given in the chapter by Davies [3], and the relations between their optical properties and their colours in books dealing with colour in general, like the one by Nassau [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The alkaline earths are the atoms of column IIA of the periodic table (Be, Mg, Ca, Sr).

  2. 2.

    The divacancy is also produced as a primary defect in neutron-irradiated silicon [32].

  3. 3.

    With reference to chemistry, when considering a binary compound, the site of the metal atom is called the cation site and the other one the anion site.

  4. 4.

    Vegard’s law is an empirical rule which holds that an approximate linear relation exists between the crystal lattice parameter of an alloy and the concentration of its constituent elements ([48]. See also [49]).

  5. 5.

    The fluence of an irradiation is the total number of particles per unit area incident on the sample.

References

  1. M. Balkanski, R.F. Wallis, Semiconductor Physics and Applications (Oxford University Press, Oxford, 2000)

    Google Scholar 

  2. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 3rd edn. (Springer, Berlin, 2001)

    Google Scholar 

  3. G. Davies, Optical measurements of point defects in semiconductors, in Identification of Defects in Semiconductors, Semiconductors and Semimetals, vol. 51B, ed. by M. Stavola (Academic, San Diego, 1999), pp. 1–92

    Google Scholar 

  4. K. Nassau, The Physics and Chemistry of Color: The Fifteen Causes of Color, 2nd edn. (Wiley-VCH, New York, 2001)

    Google Scholar 

  5. T.S. Moss, Optical Properties of Semi-conductors (Butterworths, London, 1969)

    Google Scholar 

  6. R.C. Newman, Infrared Studies of Crystal Defects (Taylor and Francis, London, 1973)

    Google Scholar 

  7. B. Pajot, Optical Absorption of Impurities and Defects in Semiconducting Crystals. I. Hydrogen-Like Centres (Springer, Berlin, 2010)

    Google Scholar 

  8. V.I. Anisimov, M.A. Korotin, E.Z. Kurmaev, Band-structure description of Mott insulators (NiO, MnO, FeO, CoO). J. Phys. Cond. Matter 2, 3973–3987 (1990)

    Google Scholar 

  9. N.F. Mott, Metal-Insulators Transitions (Taylor and Francis, London, 1974)

    Google Scholar 

  10. K. Iakoubovskii, G.J. Adriaenssens, Optical characterization of natural Argyle diamonds. Diam. Relat. Mater. 11, 125–131 (2002)

    Google Scholar 

  11. A.T. Collins, The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy. Diam. Relat. Mater. 12, 1976–1983 (2003)

    Google Scholar 

  12. B.O. Kolbesen, A. Mühlbauer, Carbon in silicon: properties and impact on devices. Solid State Electron. 25, 759–775 (1982)

    Google Scholar 

  13. J. Czochralski, Ein neues verfahren zur messung der kristallisationsgeschwindigkeit. Z. Phys. Chem. 92, 219–221 (1918)

    Google Scholar 

  14. W. Lin, The incorporation of oxygen into silicon crystals, in Oxygen in Silicon, Semiconductors and Semimetals, vol. 42, ed. by F. Shimura (Academic, San Diego, 1994), pp. 9–52

    Google Scholar 

  15. W. Ulrici, F.M. Kiessling, P. Rudolph, The nitrogen-hydrogen-vacancy complex in GaAs. Phys. Stat. Sol. B 241, 1281–1285 (2004)

    Google Scholar 

  16. V. Clerjaud, D. Côte, C. Naud, M. Gauneau, R. Chaplain, Unintentional hydrogen concentration in liquid encapsulation Czochralski grown III-V compounds. Appl. Phys. Lett. 59, 2980–2982 (1991)

    Google Scholar 

  17. W. Keller, A. Mühlbauer, Floating-Zone Silicon. Preparation and Properties of Solid State Materials, vol. 5 (Marcel Dekker, New York, 1981)

    Google Scholar 

  18. B. Schaub, J. Gallet, A. Brunet-Jailly, B. Pelliciari, Preparation of cadmium telluride by a programmed solution growth technique. Rev. Phys. Appl. 12, 147–150 (1977)

    Google Scholar 

  19. K. Iakoubovskii, G.J. Adriaenssens, M. Nesladek, Photochromism of vacancy-related centres in diamond. J. Phys. Condens. Matter 12, 189–199 (2000)

    Google Scholar 

  20. A.T. Collins, Spectroscopy of defects and transition metals in diamond. Diam. Relat. Mater. 9, 417–423 (2000)

    Google Scholar 

  21. E.F. Schubert, Doping in III-V Compound Semiconductors (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  22. J.W. Cleland, K. Lark-Horovitz, J.C. Pigg, Transmutation produced germanium semiconductors. Phys. Rev. 78, 814–815 (1950)

    Google Scholar 

  23. M. Kato, T. Yoshida, Y. Ikeda, Y. Kitagawara, Transmission electron microscope observation of “IR scattering defects” in as-grown Czochralski Si crystals. Jpn. J. Appl. Phys. 35, 5597–5601 (1996)

    Google Scholar 

  24. F. Spaepen, A. Eliat, New methods for determining the void content of silicon single crystals. IEEE Trans. Instrum. Meas. 48, 230–232 (1999)

    Google Scholar 

  25. H. Yamada-Kaneta, T. Goto, Y. Nemoto, K. Sato, M. Hikin, Y. Saito, S. Nakamura, Vacancies in CZ silicon crystal observed by low-temperature ultrasonic measurements. Physica B 401–402, 138–143 (2007)

    Google Scholar 

  26. G.M. Martin, Optical assessment of the main electron trap in bulk semi-insulating gallium arsenide. Appl. Phys. Lett. 39, 747–748 (1981)

    Google Scholar 

  27. J.C. Bourgoin, H.J. von Bardeleben, D. Stiévenard, Native defects in gallium arsenide. J. Appl. Phys. 64, R65–R91 (1988)

    Google Scholar 

  28. Z.Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, Postgrowth annealing of defects in ZnO studied by positron annihilation, x-ray diffraction, Rutherford backscattering, cathodoluminescence and Hall measurements. J. Appl. Phys. 94, 4807–4812 (2003)

    Google Scholar 

  29. P. Wagner, J. Hage, Thermal double donors in silicon. Appl. Phys. A 49, 123–128 (1989)

    Google Scholar 

  30. P. Clauws, Oxygen-related defects in germanium. Mater. Sci. Eng. B 36, 213–220 (1996)

    Google Scholar 

  31. C.A.J. Ammerlaan, Shallow thermal donors in c-Si, in Properties of Crystalline Silicon, EMIS Data Reviews Series No. 20, ed. by R. Hull (INSPEC, London, 1999), pp. 659–662

    Google Scholar 

  32. J.W. Corbett, G.D. Watkins, Silicon divacancy and its direct production by electron irradiation. Phys. Rev. Lett. 7, 314–316 (1961)

    Google Scholar 

  33. G.D. Watkins, The lattice vacancy in silicon, in Deep Centers in Semiconductors, 2nd edn., ed. by S.T. Pantelides (Gordon and Breach, New York, 1992), pp. 177–213

    Google Scholar 

  34. G.G. DeLeo, W.B. Fowler, G.D. Watkins, Theory of off-center impurities in silicon: substitutional nitrogen and oxygen. Phys. Rev. B 29, 3193–3207 (1984)

    Google Scholar 

  35. L.I. Murin, B.G. Svensson, J.L. Lindström, V.P. Markevich, C.A. Londos, Trivacancy-oxygen complex in silicon: local vibrational mode characterization. Physica B 404, 4568–4571 (2009)

    Google Scholar 

  36. D.J. Chadi, K.J. Chang, Magic numbers for vacancy aggregation in crystalline Si. Phys. Rev. B 38, 1523–1525 (1988)

    Google Scholar 

  37. S.K. Estreicher, J.L. Hastings, P.A. Fedders, The ring-hexavacancy in silicon: a stable and inactive defect. Appl. Phys. Lett. 70, 432–434 (1997)

    Google Scholar 

  38. B. Hourahine, R. Jones, A.N. Safonov, S. Öberg, P.R. Briddon, S.K. Estreicher, Identification of the hexavacancy in silicon with the B4 80 optical center. Phys. Rev. B 61, 12584–12597 (2000)

    Google Scholar 

  39. J. Chevallier, B. Pajot, Interaction of hydrogen with impurities and defects in semiconductors. Solid State Phenom. 85–86, 203–284 (2002)

    Google Scholar 

  40. S.R. Wilson, W.M. Paulson, W.F. Krolikowski, D. Fathy, J.D. Gressett, A.H. Hamdi, F.D. McDaniel, Characterization of n-type layers formed in Si by ion implantation of hydrogen, in Proceedings of Symposium on Ion Implantation and Ion Beam Processing of Materials, ed. by G.K. Hubler, O.W. Holland, C.R. Clayton, C.W. White (North Holland, New York, 1984), pp. 287–292

    Google Scholar 

  41. R. Jones, S. Öberg, F. Berg Rasmussen, B. Bech Nielsen, Identification of the dominant nitrogen defect in silicon. Phys. Rev. Lett. 72, 1882–1885 (1994)

    Google Scholar 

  42. P. Humble, D.F. Lynch, A. Olsen, Platelets defects in natural diamond. II. Determination of structure. Phil. Mag. 52, 623–641 (1985)

    Google Scholar 

  43. J.P. Goss, B.J. Coomer, R. Jones, T.D. Shaw, P.R. Briddon, M. Rayson, S. Öberg, Self-interstitial aggregation in diamond. Phys. Rev. 63, 195208/1–14 (2001)

    Google Scholar 

  44. D.G. Thomas, J.J. Hopfield, Isoelectronic traps due to nitrogen in gallium phosphide. Phys. Rev. 150, 680–689 (1966)

    Google Scholar 

  45. R.C. Newman, R.S. Smith, Local mode absorption from boron complexes in silicon, in Localized Excitations in Solids, ed. by R.F. Wallis (Plenum, New York, 1968), pp. 177–184

    Google Scholar 

  46. S.R. Morrisson, R.C. Newman, F. Thompson, The behaviour of boron impurities in n-type gallium arsenide and gallium phosphide. J. Phys. C 7, 633–644 (1974)

    Google Scholar 

  47. M. Hiller, E.V. Lavrov, J. Weber, Raman scattering study of H2 in Si. Phys. Rev. B 74, 235214/1–9 (2006)

    Google Scholar 

  48. L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17–26 (1921)

    Google Scholar 

  49. A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A 43, 3161 (1991)

    Google Scholar 

  50. K.G. McQuhae, A.S. Brown, The lattice contraction coefficient of boron and phosphorus in silicon. Solid State Electron. 15, 259–264 (1972)

    Google Scholar 

  51. Y. Takano, M. Maki, Diffusion of oxygen in silicon, in Semiconductor Silicon 1973, ed. by H.R. Huff, R.R. Burgess (The Electrochemical Society, Pennington, 1973), pp. 469–481

    Google Scholar 

  52. D. Windisch, P. Becker, Silicon lattice parameters as an absolute scale of length for high-precision measurements of fundamental constants. Phys. Stat. Sol. A 118, 379–388 (1990)

    Google Scholar 

  53. J.E. Rowe, F. Sette, S.J. Pearton, J.M. Poate, Local structure of DX-like centers from extended x-ray absorption fine structure. Diffusion and Defect Data Part B. Solid State Phenom. 10, 283–295 (1990)

    Google Scholar 

  54. K.L. Kavanagh, G.S. Gargill III, Lattice strain from substitutional Ga and from holes in heavily doped Si:Ga. Phys. Rev. B 45, 3323–3331 (1992)

    Google Scholar 

  55. S. Wei, H. Oyonagi, H. Kawanami, T. Sakamoto, K. Tamura, N.L. Saini, K. Uosaki, Local structure of isovalent and heterovalent dilute impurities in Si crystal probed by fluorescence X-ray absorption fine structure. J. Appl. Phys. 82, 4810–4815 (1997)

    Google Scholar 

  56. B. Pajot, A.M. Stoneham, A spectroscopic investigation of the lattice distortion at substitutional sites for group V and VI donors in silicon. J. Phys. C Solid State Phys. 20, 5241–5252 (1987)

    Google Scholar 

  57. E. Gaudry, A. Kiratisin, P. Sainctavit, C. Brouder, F. Mauri, A. Ramos, A. Rogale, J. Goulon, Structural and electronic relaxation around substitutional Cr3 +  and Fe3 +  in corundum. Phys. Rev. B 67, 094108 (2003)

    Google Scholar 

  58. M. Hakala, M.J. Puska, R.M. Nieminen, First-principle calculations of interstitial boron in silicon. Phys. Rev. B 61, 8155–8161 (2000)

    Google Scholar 

  59. D. Sasireka, E. Palanyandi, K. Yakutti, Study of local lattice relaxation of substitutional impurities in silicon and germanium. Int. J. Quant. Chem. 99, 142–152 (2004)

    Google Scholar 

  60. T. Sugiyama, K. Tanimura, N. Itoh, Direct measurement of transient macroscopic volume change induced by generation of electron-hole pairs in GaP and GaAs. Appl. Phys. Lett. 58, 146–148 (1990)

    Google Scholar 

  61. B. Pajot, Solubility of O in silicon, in Properties of Crystalline Silicon, EMIS Data Reviews Series No. 20, ed. by R. Hull (INSPEC, London, 1999), pp. 488–491

    Google Scholar 

  62. J.C. Mikkelsen Jr., The diffusivity and solubility of oxygen in silicon. Mater. Res. Soc. Symp. Proc. 59, 19–30 (1986)

    Google Scholar 

  63. W. Kaiser, C.D. Thurmond, Solubility of oxygen in germanium. J. Appl. Phys. 32, 115–118 (1961)

    Google Scholar 

  64. R. Duffy, T. Dao, Y. Tamminga, K. van der Tak, F. Roozeboom, E. Augendre, Group III and V impurity solubilities in silicon due to laser, flash, and solid-phase-epitaxial-regrowth. Appl. Phys. Lett. 89, 071915 (2006)

    Google Scholar 

  65. W. Schröter, M. Seibt, Solubility and diffusion of transition metal impurities in c-Si, in Properties of Crystalline Silicon, EMIS Data Reviews Series No. 20, ed. by R. Hull (INSPEC, London, 1999), pp. 543–560

    Google Scholar 

  66. R.C. Young, J.W. Westhead, J.C. Corelli, Interaction of Li and O with radiation-produced defects in Si. J. Appl. Phys. 40, 271–278 (1969)

    Google Scholar 

  67. T. Nozaki, Y. Yatsurugi, N. Akiyama, Y. Endo, Y. Makide, Behaviour of light impurity elements in the production of semiconductor silicon. J. Radioanal. Chem. 19, 109 (1974)

    Google Scholar 

  68. A.R. Bean, R.C. Newman, The solubility of carbon in pulled silicon crystals. J. Phys. Chem. Solids 32, 1211–1219 (1971)

    Google Scholar 

  69. W.R. Runyan, Silicon Semiconductor Technology, Texas Instruments Electronic Series (McGraw Hill, New York, 1965)

    Google Scholar 

  70. W. Rosnowski, Aluminium diffusion into silicon in an open tube high vacuum system. J. Electrochem. Soc. 125, 957–962 (1978)

    Google Scholar 

  71. J.S. Makris, B.J. Masters, Phosphorus isoconcentration diffusion studies in silicon. J. Electrochem. Soc. 120, 1252–1255 (1973)

    Google Scholar 

  72. F. Rollert, N.A. Stolwijk, H. Mehrer, Diffusion of sulfur-35 into silicon using an elemental vapor source. Appl. Phys. Lett. 63, 506–508 (1993)

    Google Scholar 

  73. S.J. Pearton, Alkali impurities (Na, K, Li) in c-Si, in Properties of Crystalline Silicon, EMIS Data Reviews Series No. 20, ed. by R. Hull (INSPEC, London, 1999), pp. 593–595

    Google Scholar 

  74. A. Mesli, T. Heiser, Interstitial defect reactions in silicon: the case of copper. Defect and Diffusion Forum 131–132 (Trans Tech, Liechtenstein, 1996), p. 89

    Google Scholar 

  75. T. Isobe, H. Nakashima, K. Hashimoto, Diffusion coefficient of interstitial iron in silicon. Jpn. J. Appl. Phys. 28, 1282–1283 (1989)

    Google Scholar 

  76. S. Hocine, D. Mathiot, Titanium diffusion in silicon. Appl. Phys. Lett. 53, 1269–1271 (1988)

    Google Scholar 

  77. R.C. Newman, J. Wakefield, The diffusivity of carbon in silicon. J. Phys. Chem. Solids 19, 230–234 (1961)

    Google Scholar 

  78. R. Hull (ed.), Properties of Crystalline Silicon, EMIS Data Reviews Series No. 20 (INSPEC, London, 1999)

    Google Scholar 

  79. H. Mehrer, Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Berlin, 2007)

    Google Scholar 

  80. C. Herring, N.M. Johnson, Hydrogen migration and solubility in silicon, in Hydrogen in Semiconductors, ed. by J.I. Pankove, N.M. Johnson, Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer (Academic, Boston, 1991), pp. 225–350

    Google Scholar 

  81. C.T. Sah, J.Y.C. Sun, J.J.T. Tzou, Deactivation of the boron acceptor in silicon by hydrogen. Appl. Phys. Lett. 43, 204–206 (1983)

    Google Scholar 

  82. J.I. Pankove, D.E. Carlson, J.E. Berkeyheiser, R.O. Wance, Neutralization of shallow acceptor levels in silicon by atomic hydrogen. Phys. Rev. Lett. 51, 2224–2225 (1983)

    Google Scholar 

  83. J.H. Svennson, B.G. Svennson, B. Monemar, Infrared absorption studies of the divacancy in silicon: new properties of the singly negative charge state. Phys. Rev. B 38, 4192–4197 (1988)

    Google Scholar 

  84. P.W. Anderson, Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34, 953–955 (1975)

    Google Scholar 

  85. H.Ch. Alt, Experimental evidence for a negative-U center in gallium arsenide related to oxygen. Phys. Rev. Lett. 65, 3421–3424 (1990)

    Google Scholar 

  86. M. Pesola, J. von Boehm, V. Sammalkorpi, T. Mattila, R.M. Nieminen, Microscopic structure of oxygen defects in gallium arsenide. Phys. Rev. B 60, R16267–R16270 (1999)

    Google Scholar 

  87. J.R. Troxell, G.D. Watkins, Interstitial boron in silicon: a negative-U system. Phys. Rev. B 22, 921–931 (1980)

    Google Scholar 

  88. R.D. Harris, J.L. Newton, G.D. Watkins, Negative-U defect: interstitial boron in silicon. Phys. Rev. B 36, 1094–1104 (1987)

    Google Scholar 

  89. A.A. Istratov, H. Hielsmair, E.R. Weber, Iron and its complexes in silicon. Appl. Phys. A 69, 13–44 (1999)

    Google Scholar 

  90. T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 966–974 (2010)

    Google Scholar 

  91. K. Akimoto, H. Okuyama, M. Ikeda, Y. Mori, Isoelectronic oxygen in II-VI compounds. Appl. Phys. Lett. 60, 91–93 (1992)

    Google Scholar 

  92. P.J. Dean, R.A. Faulkner, Zeeman effect and crystal-field splitting of excitons bound to isoelectronic bismuth in gallium phosphide. Phys. Rev. 185, 1064–1067 (1969)

    Google Scholar 

  93. A.M. White, P.J. Dean, K.M. Fairhurst, W. Bardsley, B. Day, The Zeeman effect in the spectrum of exciton bound to isoelectronic bismuth in indium phosphide. J. Phys. C Solid State Phys. 7, L35–L39 (1974)

    Google Scholar 

  94. M.L.W. Thewalt, D. Labrie, T. Timusk, The far infrared spectra of bound excitons in silicon. Solid State Commun. 53, 1049–1054 (1985)

    Google Scholar 

  95. G.D. Watkins, Vacancies and interstitials and their interactions with other defects in silicon, in Proceeding of Third International Symposium on Defects in Silicon, Electrochem. Soc. Symp. Proc., vol. 99–1, ed. by T. Abe, W.M. Bullis, S. Kobayashi, W. Lin, P. Wagner (Electrochemical Society, Pennington, 1999), pp. 38–52

    Google Scholar 

  96. T.V. Mashovets, V.V. Emtsev, Point defects in germanium, in Inst. Phys. Conf. Ser. No. 23 (The Institute of Physics, Bristol, 1975), pp. 103–125

    Google Scholar 

  97. P.J. Dean, J.R. Haynes, W.F. Flood, New radiative recombination processes involving neutral donors and acceptors in silicon and germanium. Phys. Rev. 161, 711–729 (1967)

    Google Scholar 

  98. G. Davies, The optical properties of luminescence centers in silicon. Phys. Rep. 176, 83–188 (1989)

    Google Scholar 

  99. B. Monemar, U. Lindefelt, W.M. Chen, Electronic structure of bound excitons in semiconductors. Physica B & C 146, 256–285 (1987)

    Google Scholar 

  100. J.F. Angress, A.R. Goodwin, S.D. Smith, A study of the vibrations of boron and phosphorus in silicon by infrared absorption. Proc. Roy. Soc. Lond. A 287, 64–68 (1965)

    Google Scholar 

  101. M.D. McCluskey, Local vibrational modes of impurities in semiconductors. J. Appl. Phys. 87, 3593–3617 (2000)

    Google Scholar 

  102. C.K. Chau, M.V. Klein, B. Wedding, Photon and phonon interactions with OH −  and OD −  in KCl. Phys. Rev. Lett. 17, 521–525 (1966)

    Google Scholar 

  103. R.C. Spitzer, W.P. Ambrose, A.J. Sievers, Observation of persistent hole burning in the vibrational spectrum of CN in KBr. Phys. Rev. B 34, 7307–7317 (1986)

    Google Scholar 

  104. G.D. Watkins, EPR and ENDOR studies of defects in semiconductors, in Identification of Defects in Semiconductors, Semiconductors and Semimetals, vol. 51A, ed. by M. Stavola (Academic, San Diego, 1998), pp. 1–43

    Google Scholar 

  105. G. Feher, Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959)

    Google Scholar 

  106. J.M. Spaeth, Magneto-optical and electrical detection of paramagnetic resonance in semiconductors, in Identification of Defects in Semiconductors, Semiconductors and Semimetals, vol. 51A, ed. by M. Stavola (Academic, San Diego, 1998), pp. 45–92

    Google Scholar 

  107. J. Walker, Optical absorption and luminescence in diamond. Rep. Prog. Phys. 42, 1605–1659 (1979)

    Google Scholar 

  108. C.D. Clark, R.W. Ditchburn, H.B. Dyer, The absorption spectra of natural and irradiated diamond. Proc. R. Soc. Lond. A 234, 363–381 (1956)

    Google Scholar 

  109. C.D. Clark, R.W. Ditchburn, H.B. Dyer, The absorption spectra of irradiated diamonds after heat treatment. Proc. Roy. Soc. Lond. A 237, 75–89 (1956)

    Google Scholar 

  110. G.D. Watkins, J.W. Corbett, R.M. Walker, Spin resonance in electron irradiated silicon. J. Appl. Phys. 30, 1198–1203 (1959)

    Google Scholar 

  111. J.W. Corbett, G.D. Watkins, R.M. Chrenko, R.S. McDonald, Defects in irradiated silicon. I. Infrared absorption of the Si-A center. Phys. Rev. 121, 1015–1022 (1961)

    Google Scholar 

  112. W.V. Smith, P.P. Sorokin, I.L. Gelle, G.J. Lasher, Electron-spin resonance of nitrogen donors in diamond. Phys. Rev. 115, 1546–1552 (1959)

    Google Scholar 

  113. W. Jung, G.S. Newell, Spin-1 centers in neutron-irradiated silicon. Phys. Rev. 132, 648–662 (1963)

    Google Scholar 

  114. G.M. Martin, A. Mitonneau, A. Mircea, Electron traps in bulk and epitaxial GaAs crystals. Electron. Lett. 13, 191–192 (1977)

    Google Scholar 

  115. F. Bridges, G. Davies, J. Robertson, A.M. Stoneham, The spectroscopy of crystal defects: a compendium of defect nomenclature. J. Phys. Cond. Matter 2, 2875–2928 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Pajot .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pajot, B., Clerjaud, B. (2013). Introduction. In: Optical Absorption of Impurities and Defects in Semiconducting Crystals. Springer Series in Solid-State Sciences, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18018-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18018-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18017-0

  • Online ISBN: 978-3-642-18018-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics