Skip to main content

A Design Procedure for Oscillator-Based Hardware Random Number Generator with Stochastic Behavior Modeling

  • Conference paper
Information Security Applications (WISA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6513))

Included in the following conference series:

Abstract

This paper presents a procedure in designing an oscillator-based hardware random number generator (HRNG) which generates highly random bitstreams even under the deterministic noises. The procedure consists of two parts; HRNG design without considering deterministic noises followed by randomness evaluation under deterministic noises. A stochastic behavior model to efficiently decide the design parameters is proposed, and it is validated by measurement of HRNGs fabricated in 65nm CMOS process. The proposed model directly calculates approximate entropy of output without generating bitstream, which make it easier to explore design space. A simulator considering the power supply noise is also developed for evaluation under deterministic noises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jun, B., Kocher, P.: The Intel random number generator, cryptography research inc., white paper prepared for Intel corporation (April 1999)

    Google Scholar 

  2. Bucci, M., Germani, L., Luzzi, R., Trifiletti, A., Varanonuovo, M.: A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Transactions on Computers 52(4) (April 2003)

    Google Scholar 

  3. Balachandran, G.K., Barnett, R.E.: A 440-nA true random number generator for passive RFID tags. IEEE Transactions on Circuits and Systems 55(11) (December 2008)

    Google Scholar 

  4. Petrie, C.S., Connelly, J.A.: Modeling and simulation of oscillator-based random number generators. In: IEEE International Symposium on Circuits and Systems, vol. 4, pp. 324–327 (May 1996)

    Google Scholar 

  5. Petrie, C.S., Connelly, J.A.: A noise-based IC random number generator for applications in cryptography. IEEE Transactions on Circuits and Systems 47(5) (May 2000)

    Google Scholar 

  6. Security requirements for cryptographic modules, FIPS pub. 140-2 (May 2001)

    Google Scholar 

  7. A statistical test suite for the validation of random number generators and pseudorandom number generators for cryptographic applications, NIST, pub. 800-22 (May 2001)

    Google Scholar 

  8. Davies, R.B.: Exclusive OR (XOR) and hardware random number generators, pp. 1–11 (February 2002), http://www.robertnz.net/pdf/xor2.pdf

  9. Marsaglia, G.: Diehard battery of tests of randomness (1995), http://stat.fsu.edu/pub/diehard/

  10. Ergün, S.: Modeling and analysis of chaos-modulated dual oscillator-based random number generators. In: European Signal Processing Conference, pp. 1–5 (August 2008)

    Google Scholar 

  11. Schindler, W.: Stochastical model and its analysis for a physical random number generator. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 276–289. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Tkacik, T.E.: A hardware random number generator. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 875–876. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Schellekens, D., Preneel, B., Verbauwhede, I.: FPGA vendor agnostic true random number generator. In: IEEE Proceedings of the International Conference on Field Programmable Logic and Applications, pp. 1–6 (2006)

    Google Scholar 

  14. Ledermann, W.: Handbook of applicable mathematics, vol. 6. John Wiley & Sons, Chichester (1980)

    Google Scholar 

  15. Matsumoto, M., Yasuda, S., Ohba, R., Ikegami, K., Tanamoto, T., Fujita, S.: 1200μm 2 physical random-number generators based on SiN mosfet for secure smart-card application. In: IEEE International Solid-State Circuits Conference, pp. 414–624 (2008)

    Google Scholar 

  16. Sakurai, T., Newton, A.R.: Alpha-power law mosfet model and its applications to cmos inverter delay and other formulas. IEEE Journal of Solid-State Circuits 25(2), 584–594 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amaki, T., Hashimoto, M., Mitsuyama, Y., Onoye, T. (2011). A Design Procedure for Oscillator-Based Hardware Random Number Generator with Stochastic Behavior Modeling. In: Chung, Y., Yung, M. (eds) Information Security Applications. WISA 2010. Lecture Notes in Computer Science, vol 6513. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17955-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17955-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17954-9

  • Online ISBN: 978-3-642-17955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics