• Octavian Iordache
Part of the Understanding Complex Systems book series (UCS, volume 70)


Entropy and entropy production for multi-scale and multi-level systems are studied here with reference to physical and informational aspects.

Entropy balance, entropy increase and entropy production principles are formulated in new frames based on model categorification.

Case studies pertain to biosystems and ecosystems.

For the general PSM framework, new entropic criteria are proposed based on the study of different types of causation.

Evolvability maximization role for integrative closure is emphasized.


Maximum Entropy Entropy Production Integrative Closure Entropy Increase Maximum Entropy Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, I.: Entropy production in living systems: from organisms to ecosystems. Thermochimica Acta. 250, 359–370 (1995)CrossRefGoogle Scholar
  2. Capdepuy, P., Polani, D., Nehaniv, C.: Maximization of potential information flow as a universal utility for collective behavior. In: Proceeding of the 2007 IEEE Symposium on Artificial Life (CI-ALife 2007), pp. 207–213. IEEE Press, Piscataway (2007)CrossRefGoogle Scholar
  3. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. Dewar, R.C.: Informational theory explanation of the fluctuation theorem, maximum entropy production, and self-organized criticality in non-equilibrium stationary states. J. Phys. A 36, 631–641 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. Glansdorff, P., Prigogine, I.: Structure Stabilité et Fluctuation. Masson et Cie, Paris (1971)Google Scholar
  6. Herrmann-Pillath, C.: Entropy, Function and Evolution: Naturalizing Peirceian Semiosis. Entropy 12, 197–242 (2010)CrossRefGoogle Scholar
  7. Herrmann-Pillath, C.: Rethinking Evolution, Entropy and Economics: A triadic conceptual framework for the Maximum Entropy Principle as applied on the growth of knowledge. In: Aussschuβ fur Evolutorische Okonomik, Linz, Austria (2010)Google Scholar
  8. Hiernaux, J., Babloyantz, A.: Dissipation in Embryogenesis. J. Non-Equilib.Thermodyn. 1, 33–37 (1976)CrossRefGoogle Scholar
  9. Iordache, O., Frangopol, P.T.: Relaxations in biophysical systems. Rev. Roum. Phys. 33, 1159–1162 (1988b)Google Scholar
  10. Iordache, O., Frangopol, P.T.: The production of entropy and the stability of biosystems with many timescales. Rev. Roum. Biochim. 25, 325–328 (1988c)Google Scholar
  11. Iordache, O., Frangopol, P.T.: Nonarchimedean formalism for entropy balance in biosystems. Rev. Roum. Phys. 34, 217–227 (1989)MathSciNetGoogle Scholar
  12. Jaynes, E.T.: Information Theory and Statistical Mechanics. Phys. Rev. 106, 620–630 (1957)CrossRefMathSciNetGoogle Scholar
  13. Kauffman, S.: Investigations. Oxford University Press, Oxford (2000)Google Scholar
  14. Klyubin, A.S., Polani, D., Nehaniv, C.L.: Empowerment: A universal agent-centric measure of control. In: Proc. IEEE Congress of Evolutionary Computation (CEC 2005), Edinburgh, UK, pp. 128–135 (2005)Google Scholar
  15. Lurie, D., Wagensberg, J.: Entropy balance in biological development and heat dissipation in embryogenesis. J. Non-Equilib. Thermodyn. 4, 127–130 (1979)CrossRefGoogle Scholar
  16. Neder, L.: Modell einer Differentialrechnng mit aktual unendlich kleinen Grossen erster Ordnung. Math. Annalen. 118(2), 251–262 (1941)CrossRefMathSciNetGoogle Scholar
  17. Neder, L.: Model einer Leibnizischen Differentialrechnung mit aktual unendlich kleiner Grossen samtlicher Ordnungen. Math. Annalen. 118(5), 718–732 (1943)zbMATHMathSciNetGoogle Scholar
  18. Nicolis, G., Prigogine, I.: Exploring Complexity. An Introduction. Freeman, New York (1989)Google Scholar
  19. Polani, D.: Information: currency of life? HFSP Journal 3(5), 307–316 (2009)CrossRefGoogle Scholar
  20. Prigogine, I.: From being to becoming. Time and complexity in the physical sciences. Freeman, San Francisco (1980)Google Scholar
  21. Prigogine, I.: What is Entropy. Naturwissenschaften 76, 1–8 (1989)CrossRefGoogle Scholar
  22. Salthe, S.: Infodynamics, a developmental framework for ecology/economics. Conservation Ecology (2003)Google Scholar
  23. Schnakenberg, L.: Thermodynamic Network Analysis of Biological Systems. Springer, Berlin (1977)zbMATHGoogle Scholar
  24. Sporns, O., Lungarella, M.: Evolving coordinated behavior by maximizing information structure. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Artificial life X, Proccedings of the Tenth International Conference on the simulation and Synthesis of Living Systems, pp. 323–329. MIT Press, Cambridge (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Octavian Iordache

    There are no affiliations available

    Personalised recommendations