New PSM Frames

  • Octavian Iordache
Part of the Understanding Complex Systems book series (UCS, volume 70)


The hierarchy or the network, which allows modeling at several levels is deep-rooted in the higher categories frames. Models of models, that is, meta-models allowing the study of processes of processes, and so on, are presented.

Four realms general PSM frames results by integrative closure.

Innovative is the model categorification for multiple levels modeling. This imposes making use of unconventional notions of time and probabilities.

Non-Archimedean frames based on infinitesimals and on non-well-founded sets are presented.


Fuzzy Subset Fuzzy Probability Centered Architecture Foundation Axiom Conventional Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aczel, P.: Non-well-founded Sets, Stanford CSLI (1988)Google Scholar
  2. Bainbridge, W.S., Roco, M.C. (eds.): Managing Nano-Bio Info-Cogno Innovations: Converging Technologies in Society. Springer Science and Business Media, Berlin (2006)Google Scholar
  3. Barwise, J., Moss, L.: Vicious Circles, On the Mathematics of Non-Wellfounded Phenomena. CSLI Lecture Notes Number, vol. 60. CSLI Publications, Stanford (1996)zbMATHGoogle Scholar
  4. Blume, A., Branderburger, A., Dekel, E.: Lexicographic probabilities and choice under uncertainty. Econometrica 59(1), 61–79 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  5. Brier, S.: Cybersemiotic pragmaticism and constructivism. Constructivist Foundations 5(1), 19–39 (2009)MathSciNetGoogle Scholar
  6. Chemero, A., Turvey, M.T.: Complexity and “closure to efficient causation”. In: Ruiz-Mirazo, K., Barandiaran, R. (eds.) Proceedings of ALifeX: Workshops on Artificial Autonomy, pp. 13–19Google Scholar
  7. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple valued logics: a clarification. Annals of Mathematics and Artificial Intelligence 32, 35–66 (2001)CrossRefMathSciNetGoogle Scholar
  8. Hammond, P.J.: Elementary Non-Archimedean Representation of Probability for Decision Theory and Games. In: Humphreys, P. (ed.) Patrick Suppes: Scientific Philosopher. Probability and Probabilistic Causality, vol. I, pp. 25–59. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  9. Iordache, O.: Evolvable Designs of Experiments Applications for Circuits. J. Wiley VCH, Weinheim (2009)CrossRefGoogle Scholar
  10. Iordache, O.: Polystochastic Models for Complexity. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  11. Neder, L.: Modell einer Differentialrechnng mit aktual unendlich kleinen Grossen erster Ordnung. Math. Annalen. 118(2), 251–262 (1941)CrossRefMathSciNetGoogle Scholar
  12. Neder, L.: Model einer Leibnizischen Differentialrechnung mit aktual unendlich kleiner Grossen samtlicher Ordnungen. Math. Annalen. 118(5), 718–732 (1943)zbMATHMathSciNetGoogle Scholar
  13. Poli, R.: The basic problem of the theory of levels of reality. Axiomathes 12(3-4), 261–283 (2001)CrossRefGoogle Scholar
  14. Schumann, A.: Non-Well-Founded Probabilities and Coinductive Probability Logic. In: Proceedings of the 2008 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, pp. 54–57 (2008)Google Scholar
  15. Sowa, J.F.: Representing Knowledge Soup. In: Language and Logic, Conference on Knowledge and Logic. Technische Universität Darmstadt (2002)Google Scholar
  16. Sowa, J.F.: The challenge of knowledge soup. In: Proc. First International WordNet Conference, Goa, India (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Octavian Iordache

    There are no affiliations available

    Personalised recommendations