Advertisement

Existential Graphs

  • Octavian Iordache
Part of the Understanding Complex Systems book series (UCS, volume 70)

Abstract

Diagrammatic methods as existential graphs and category theory diagrams are useful for multi-level problem solving.

Taking inspiration from systems sciences, this chapter highlights multi-level modeling potentialities for Peirce’s existential graphs.

The relation with pragmatic philosophy and studies of continuity is emphasized.

High categories frames for Alpha, Beta and Gamma systems are discussed. Case studies refer to separation flow-sheets.

Keywords

Monoidal Category Integrative Closure Nest Level Braided Monoidal Category Pragmatic Philosophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, M.: *-Autonomous Categories. Lecture Notes in Mathematics, vol. 752. Springer, Berlin (1979)Google Scholar
  2. Brady, G., Trimble, T.: A categorical interpretation of C.S. Peirce’s propositional logic Alpha. Journal of Pure and Applied Algebra 149, 213–239 (2000a)zbMATHCrossRefMathSciNetGoogle Scholar
  3. Brady, G., Trimble, T.: A string diagram calculus for predicate logic and C.S. Peirce’s system Beta (2000b) (Preprint)Google Scholar
  4. Crans, S.: On braidings, syllepses ans symmetries. Cahiers Topologie Geom. Differentielle Categ. 41(1), 2–74 (2000)zbMATHMathSciNetGoogle Scholar
  5. Dau, F.: The Logic System of Concept Graphs with Negation and its Relationship with Predicate Logic. LNCS (LNAI), vol. 2892. Springer, Heidelberg (2003)zbMATHCrossRefGoogle Scholar
  6. Ehrlich, P.: The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: the Emergence of non-Archimedean Systems of Magnitudes. Archive for History of Exact Sciences 60, 1–121 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. Havenel, J.: Peirce’s Clarifications on Continuity. Transactions of the Charles S. Peirce Society 44(1), 86–133 (2008)Google Scholar
  8. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88, 55–112 (2001)CrossRefMathSciNetGoogle Scholar
  9. Kauffman, H.L.: The mathematics of Charles Sanders Peirce. Cybernetics and Human Knowing 8(1-2), 79–110 (2001)Google Scholar
  10. McCrudden, P.: Balanced coalgebroids. Theory and Applications of categories 7(6), 71–147 (2000)zbMATHMathSciNetGoogle Scholar
  11. Peirce, C.S.: The New Elements of Mathematics, Eisele, C. (ed.), vol. I-IV. Mouton Publishers and Humanities Press (1976)Google Scholar
  12. Roberts, D.: The Existential Graphs of Charles S. Peirce. Mouton, Hague (1973)Google Scholar
  13. Rosa, M.A.: Le Concept de Continuité chez C.S Peirce. These de doctorat E.H.E.S.S., Paris (1993)Google Scholar
  14. Sowa, J.F.: Knowledge Representation: Logical, Philosophical and Computational Foundations. Brooks-Cole, Pacific Grove (2000)Google Scholar
  15. Whitehead, A.N.: Process and Reality. Corrected edn., Griffin, D.R., Sherburne, D.W. (eds.). Free Press, New York (1978)Google Scholar
  16. Yang, R.T.: Gas Separation by Adsorption Processes. Butherworths, Boston (1987)Google Scholar
  17. Zalamea, F.: Peirce’s Continuum. A Methodological and Mathematical Approach. University of Bogota (2001)Google Scholar
  18. Zalamea, F.: Peirce’s logic of continuity: Existential graphs and non-Cantorian continuum. The Review of Modern Logic 9, 115–162 (2003)MathSciNetGoogle Scholar
  19. Zalamea, F.: Towards a complex variable interpretation of Peirce’s Existential Graphs. In: Proceedings of Applying Peirce Conference, Helsinki (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Octavian Iordache

    There are no affiliations available

    Personalised recommendations