Skip to main content

Water Quality Assessment through Smart Sensing and Computational Intelligence

  • Chapter
New Developments and Applications in Sensing Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 83))

Abstract

Surface water quality monitoring is one of the important activities in the environmental monitoring domain and implies complex measurement activities in order to obtain physical, chemical and biological characteristics of the water. Some of these characteristics are able to be measured in the field but imply the utilization of specific water quality sensors that are used by operators as individually units or, preferably, are part of distributed water quality monitoring networks particularly when monitoring extensive areas.

Two concepts are nowadays associated with environment monitoring networks: smart sensing nodes and computational intelligence algorithms. Thus, different smart sensing nodes deliver data that are used by advanced processing units for different purposes, namely: (1) to evaluate the characteristics of water based on measurement channel indirect modeling; (2) to perform the short time and long term forecasting of these characteristics; (3) to detect pollution events and anomalous functioning; (4) to perform data recovering using intelligent algorithms such as neural network and adaptive neuro-fuzzy. The overall operation of the network is optimized if its nodes are provided with functionalities such as auto-identification, networking plug-and-play, auto-calibration, and fault detection.

IEEE 1451 family of standards define all aspects necessary not only to transform a sensor into a smart sensor, but also to interface or integrate sensors in networks. In the paragraphs that will follow, we propose the architecture of a smart sensing node suitable for a distributed water quality monitoring network that is IEEE 1451 compatible. The emphasis is placed on the identification of each sensor – which permits individual addressing - and on the algorithms for multivariable characteristics modeling that prove to be very useful for accurate direct digital readout of water quality parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. EPA - Monitoring and Assessing Water Quality: http://water.epa.gov/type/watersheds/monitoring/monitoring_index.cfm

  2. Harmanciogammalu, N.B., Fistikoglu, O., Ozkul, S.D., Singh, V.P., Alpaslan, M.N.: Water Quality Monitoring Network Design. Springer, Heidelberg (1999)

    Google Scholar 

  3. YSI Environment - YSI-6600 EDS - YSI Catalog, http://www.ysi.com

  4. Campbell Scientific, Stand-alone Water Quality Monitoring and Control, http://www.campbellsci.com/water-quality

  5. SDI-12 – SDI-12 Protocol Specifications, http://www.sdi-12.org/

  6. IEEE Standard for a Smart Transducer Interface for Sensors and Actuators - Network Capable Application Processor (NCAP) Information Model, IEEE 1451.1- 1999 Standard (1999), http://standards.ieee.org/catalog/olis/im.html

  7. Viegas, V., Dias Pereira, J.M., Silva Girão, P.: Smart Transducer Block Enables Plug & Play Transducers. In: Proceeding IMEKO World Congress, Lisbon, September 2009, pp. 1452–1455 (2009)

    Google Scholar 

  8. IEEE Std 1451.4-2004, Standard for a Smart Transducer Interface for Sensors and Actuators- Mixed-Mode Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats. IEEE Standards Association, Piscataway, NJ, subclause 5.1.1 (2004)

    Google Scholar 

  9. Kim, J., Kim, D.-J., Byun, H.-G., Ham, Y., Jung, W., Han, D.-W., Park, J.-S., Lee, H.-L.: The definition of basic TEDS of IEEE 1451.4 for sensors for an electronic tongue and the proposal of new template TEDS for electrochemical devices. Elsevier Talanta 71(4), 1642–1651 (2007)

    Article  Google Scholar 

  10. Patra, J., Kot, A., Panda, G.: An Intelligent Pressure Sensor Using Neural Networks. IEEE Trans. on Inst. and Meas. 49(4), 829–834 (2000)

    Article  Google Scholar 

  11. Pereira, J.M.D., Postolache, O., Girão, P.M.B.S., Cretu, M.: Minimizing Temperature Drift Errors of Conditioning Circuits Using Artificial Neural Networks. IEEE Trans. on Inst. and Meas. 49(5), 1122–1127 (2000)

    Article  Google Scholar 

  12. Postolache, O., Dias Pereira, J.M., Girão, P.M.: Aplication of Neural Structures in Water Quality Measurements. In: Proc. IMEKO World Congress, Wien, Austria, vol. IX, pp. 353–358 (September 2000)

    Google Scholar 

  13. Postolache, O., Girão, P.M., Dias Pereira, J.M., Ramos, H.G.: Intelligent Processing of the Dynamic Response of Sensors for Water Quality Monitoring. In: Proc. IEEE International Conf. on Signals, Systems, Devices- SSD, Tunisia, vol. I (March 2005)

    Google Scholar 

  14. Postolache, O., Girão, P., Patricio, G.P., Sacramento, J.S., Macedo, P.M., Dias Pereira, J.M.: Distributed Instrumentation and Geographic Information System for Dolphins. In: Proc. IEEE International Instrumentation and Technology Conf. - I2MTC, Victoria, Canada, vol. I, pp. 1777–1782 (May 2008)

    Google Scholar 

  15. Ulivieri, N., Distante, C., Luca, T., Rocchi, S., Siciliano, P.: IEEE1451.4: A way to standardize gas sensor. Sensors and Actuators B: Chemical 114(1), 141–151 (2006)

    Article  Google Scholar 

  16. Postolache, O., Girão, P., Dias Pereira, J.M.: An IEEE1451.x and RFID compatibility unit for water quality monitoring. In: Proc IMEKO World Congress, Lisbon, Portugal, vol. 1, pp. 2178–2182 (2009)

    Google Scholar 

  17. National Instruments, Upgrading Your System for Virtual TEDS, http://zone.ni.com/devzone/cda/tut/p/id/4470

  18. Finkenzeller, K.: RFID Handbook: Radio-Frequency Identification Fundamentals and Applications. Wiley, Chichester (2000)

    Google Scholar 

  19. Piramuthu, S.: Adaptive Framework for Collisions in RFID Tag Identification. Journal of Information & Knowledge Management 7(1), 9–14 (2008)

    Article  Google Scholar 

  20. Alien, ALN-9540 Squiggle® Inlay – Product overview, http://www.alientechnology.com/docs/products/DS_ALN_9540_Squiggle.pdf

  21. Postolache, O., Girão, P., Dias Pereira, J., Ramos, H.: Intelligent Processing of the Dynamic Response of Sensors for Water Quality Monitoring. Trans. on Systems, Signals and Devices 3(4), 539–550 (2008)

    Google Scholar 

  22. Postolache, O., Girão, P., Dias Pereira, J., Ramos, H.: Self-organizing Maps Application in a Remote Water Quality Monitoring System. IEEE Transactions on Instrumentation and Measurement 54(1), 322–329 (2005)

    Article  Google Scholar 

  23. Haykin, S.: Neural Networks - A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  24. Patra, J.C., Bos, A., Kot, A.C.: An ANN-based smart capacitive pressure sensor in dynamic environment. Sensors and Actuators 86, 26–38 (2000)

    Article  Google Scholar 

  25. Jang, J.S.R.: ANFIS: adaptive-network-based-fuzzy-inference-system. IEEE Trans. Syst. Man Cybernet. SMC23, 665–685 (1993)

    Google Scholar 

  26. Jang, J.S., Sun, C., Mizutani, E.: Neurofuzzy and Soft Computing. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  27. Patra, J.C., Bos, A., Kot, A.C.: An ANN-based smart capacitive pressure sensor in dynamic environment. Sensors and Actuators 86, 26–38 (2000)

    Article  Google Scholar 

  28. Postolache, O., Girão, P., Dias Pereira, J.: Smart Sensors and Intelligent Signal Processing in Water Quality Monitoring Context. In: International Conf. on Sensing Technology - ICST, Lecce, Italy, vol. 1 (June 2010)

    Google Scholar 

  29. Zhang, H., Liu, D.: Fuzzy Modeling and Fuzzy Control. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  30. Shoorehdeli, M., Teshnehlab, M., Sedigh, A.: Identification using ANFIS with intelligent hybrid stable learning algorithm approaches. Neural Comput. & Applic. (18), 157–174 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Postolache, O., Girão, P.S., Pereira, J.M.D. (2011). Water Quality Assessment through Smart Sensing and Computational Intelligence. In: Mukhopadhyay, S.C., Lay-Ekuakille, A., Fuchs, A. (eds) New Developments and Applications in Sensing Technology. Lecture Notes in Electrical Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17943-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17943-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17942-6

  • Online ISBN: 978-3-642-17943-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics