Skip to main content

Uncertainty Analysis Utilizing Gradient and Hessian Information

  • Conference paper
  • First Online:
Computational Fluid Dynamics 2010

Abstract

In this chapter gradient and Hessian information computed using automatic differentiation and the adjoint method is applied to approximate Monte Carlo simulations for a geometric uncertainty analysis involving a sinusoidally pitching airfoil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Foreword: special issue on robust optimization. Math. Prog. 107(1–2), 1–3 (2006)

    Article  MathSciNet  Google Scholar 

  2. Chalot, F., Dinh, Q., Herbin, E., Martin, L., Ravachol, M., Roge, G.: Estimation of the impact of geometrical uncertainties on aerodynamic coefficients using CFD. AIAA Paper, 2008–2068

    Google Scholar 

  3. Ghate, D., Giles, M.B.: Inexpensive Monte Carlo uncertainty analysis. In Recent Trends in Aerospace Design and Optimization. Tata McGraw-Hill, New Delhi, pp. 203–210 (2006)

    Google Scholar 

  4. Kraaijpoel, D.A.: Seismic Ray Fields and Ray Field Maps: Theory and Algorithms. PhD thesis, Universiteit Utrecht, The Netherlands (2003)

    Google Scholar 

  5. Laurenceau, J., Sagaut, P.: Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging. AIAA J. 46(2), 498–507 (2008)

    Article  Google Scholar 

  6. Oberkampf, W.L., Barone, M.F.: Measures of agreement between computation and experiment: validation metrics. J. Comput. Phys. 217, 5–36 (2006)

    Article  MATH  Google Scholar 

  7. Rumpfkeil, M.P., Mavriplis, D.J.: Efficient Hessian Calculations using Automatic Differentiation and the Adjoint Method. AIAA Paper, 2010–1268 (2010)

    Google Scholar 

  8. Sherman, L.L., Taylor III, A.C., Green, L.L., Newman, P.A.: First- and second-order aerodynamic sensitivity derivatives via automatic differentiation with incremental iterative methods. J. Comput. Phys. 129, 307–331 (1996)

    Article  MATH  Google Scholar 

  9. Yamazaki, W., Rumpfkeil, M.P., Mavriplis, D.J.: Design Optimization Utilizing Gradient/Hessian Enhanced Surrogate Model. AIAA Paper, 2010–4363 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus P. Rumpfkeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rumpfkeil, M.P., Yamazaki, W., Mavriplis, D.J. (2011). Uncertainty Analysis Utilizing Gradient and Hessian Information. In: Kuzmin, A. (eds) Computational Fluid Dynamics 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17884-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17884-9_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17883-2

  • Online ISBN: 978-3-642-17884-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics