Advertisement

Metakaolin

  • Rafat Siddique
  • Mohammad Iqbal Khan
Chapter
Part of the Engineering Materials book series (ENG.MAT., volume 37)

Abstract

Metakaolin (MK) is a pozzolanic material. It is a dehydroxylated form of the clay mineral kaolinite. It is obtained by calcination of kaolinitic clay at a temperature between 500°C and 800°C. Between 100 and 200°C, clay minerals lose most of their adsorbed water. Between 500 and 800°C kaolinite becomes calcined by losing water through dehydroxilization. The raw material input in the manufacture of metakaolin (Al2Si2O7) is kaolin clay. Kaolin is a fine, white, clay mineral that has been traditionally used in the manufacture of porcelain. Kaolinite is the mineralogical term that is applicable to kaolin clays. Kaolinite is defined as a common mineral, hydrated aluminum disilicate, the most common constituent of kaolin.

Keywords

Compressive Strength Portland Cement Silica Fume Calcium Hydroxide Cement Paste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Al-Akhras, N.M.: Durability of metakaolin to sulfate attack. Cem. Concr. Res. 36(9), 1727–1734 (2006)CrossRefGoogle Scholar
  2. 2.
    Ambroise, J., Maximilien, S., Pera, J.: Properties of metakaolin blended cements. Adv. Cem. Based Mater. 1(4), 161–168 (1994)CrossRefGoogle Scholar
  3. 3.
    Aquino, W., Lange, D.A., Olek, D.A.: The influence of metakaolin and silica fume on the chemistry of alkali–silica reaction products. Cem. Concr. Compos. 23(6), 485–493 (2001)CrossRefGoogle Scholar
  4. 4.
    Asbridge, A.H., Walters, G.V., Jones, T.R.: Ternary blended concretes-OPC/GGBFS/metakaolin, pp. 547–557. Concrete across Borders, Denmark (1994)Google Scholar
  5. 5.
    Asbridge, A.H., Chadbourn, G.A., Page, C.L.: Effects of metakaolin and the interfacial transition zone on the diffusion of chloride ions through cement mortars. Cem. Concr. Res. 31(11), 1567–1572 (2001)CrossRefGoogle Scholar
  6. 6.
    Asbridge, A.H., Page, C.L., Page, M.M.: Effects of metakaolin, water/binder ratio and interfacial transition zones on the micro hardness of cement mortars. Cem. Concr. Res. 32(9), 1365–1369 (2002)CrossRefGoogle Scholar
  7. 7.
    ASTM C 618.: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete. Annual Book of ASTM Standards, Philadelphia (1993)Google Scholar
  8. 8.
    Badogiannis, E., Papadakis, V.G., Chaniotakis, E., Tsivilis, S.: Exploitation of poor Greek kaolins: strength development of metakaolin concrete and evaluation by means of k-value. Cem. Concr. Res. 34(6), 1035–1041 (2004)CrossRefGoogle Scholar
  9. 9.
    Badogiannis, E., Kakali, G., Dimopoulou, G., Chaniotakis, E., Tsivilis, S.: Metakaolin as a main cement constituent: exploitation of poor Greek kaolins. Cem. Concr. Compos. 27(2), 197–203 (2005)CrossRefGoogle Scholar
  10. 10.
    Badogiannis, E., Tsivilis, S.: Exploitation of poor Greek Kaolins: durability of metakaolin concrete. Cem. Concr. Compos. 31(2), 128–133 (2009)CrossRefGoogle Scholar
  11. 11.
    Batis, G., Pantazopoulou, P., Tsivilis, S., Badogiannis, E.: The effect of metakaolin on the corrosion behavior of cement mortars. Cem. Concr. Compos. 27(1), 125–130 (2005)CrossRefGoogle Scholar
  12. 12.
    Bredy, P., Chabannet, M., Pera, J.: Microstructural and porosity of metakaolin blended cements. Mater. Res. Soc. Symp. 137, 431–436 (1989)Google Scholar
  13. 13.
    Boddy, A., Hooton, R.D., Gruber, K.A.: Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin. Cem. Concr. Res. 31(5), 759–765 (2001)CrossRefGoogle Scholar
  14. 14.
    Brooks, J.J., Johari, M.M.A.: Effect of metakaolin on creep and shrinkage of concrete. Cem. Concr. Compos. 23(6), 495–502 (2001)CrossRefGoogle Scholar
  15. 15.
    Cabrera, J., Rojas, M.F.: Mechanism of hydration of the metakaolin–lime–water system. Cem. Concr. Res. 31(2), 177–182 (2001)CrossRefGoogle Scholar
  16. 16.
    Cabrera, J.G., Nwaubani, S.O.: The microstructure and chloride ion diffusion characteristics of cements containing metakaolin and fly ash. In: V.M. Malhotra (ed.), Sixth CANMET/ACI/JCI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, vol. 1, pp. 385–400. Bangkok, Thailand (1998)Google Scholar
  17. 17.
    Cachim, P., Velosa, A.L., Rocha, F.: Effect of Portuguese metakaolin on hydraulic lime concrete using different curing conditions. Construct. Build. Mater. 24(1), 71–78 (2010)CrossRefGoogle Scholar
  18. 18.
    Caldarone, M.A., Gruber, K.A., Burg, R.G.: High reactivity metakaolin: a new generation mineral admixture. Concr. Int. 16(11), 37–40 (1994)Google Scholar
  19. 19.
    Changling, H., Osbaeck, B., Makovicky, E.: Pozzolanic reaction of six principal clay minerals: activation reactivity assessments and technological effects. Cem. Concr. Res. 25(8), 1691–1702 (1995)CrossRefGoogle Scholar
  20. 20.
    Coleman, N.J., Page, C.L.: Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin. Cem. Concr. Res. 27(1), 147–154 (1997)CrossRefGoogle Scholar
  21. 21.
    Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X., Degeimbre, R.: Durability of mortars modified with metakaolin. Cem. Concr. Res. 33(9), 473–1479 (2003)CrossRefGoogle Scholar
  22. 22.
    Curcio, F., Deangelis, B.A., Pagliolico, S.: Metakaolin as pozzolanic micro filler for high-performance mortars. Cem. Concr. Res. 28(6), 803–809 (1998)CrossRefGoogle Scholar
  23. 23.
    Dias, W.P.S.: Reduction of concrete sorptivity with age through carbonation. Cem. Concr. Res. 30(8), 1255–1261 (2000)CrossRefGoogle Scholar
  24. 24.
    Frías, M., Cabrera, J.: Pore size distribution and degree of hydration of MK–cement pastes. Cem. Concr. Res. 30(4), 561–569 (2000)CrossRefGoogle Scholar
  25. 25.
    Frías, M., Sánchez de Rojas, M.I., Cabrera, J.: The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin–cement mortars. Cem. Concr. Res. 30(2), 209–216 (2000)CrossRefGoogle Scholar
  26. 26.
    Frías, M., Cabrera, J.: Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20°C. Cem. Concr. Res. 31(4), 519–527 (2001)CrossRefGoogle Scholar
  27. 27.
    Gleize, F.J.P., Cyr, M., Escadeillas, G.: Effects of metakaolin on autogenous shrinkage of cement pastes. Cem. Concr. Compos. 29(2), 80–87 (2007)CrossRefGoogle Scholar
  28. 28.
    Gonçalves, J.P., Tavares, L.M., Filho, R.D.T., Fairbairn, E.M.R.: Performance evaluation of cement mortars modified with metakaolin or ground brick. Construct. Build. Mater. 23(5), 1971–1979 (2009)CrossRefGoogle Scholar
  29. 29.
    Gruber, K.A., Ramlochan, T., Boddy, A., Hooton, R.D., Thomas, M.D.A.: Increasing concrete durability with high-reactivity metakaolin. Cem. Concr. Res. 23(6), 479–484 (2001)CrossRefGoogle Scholar
  30. 30.
    Igurashi, S., Bentur, A., Mindess, S.: Micro-hardness testing of cementitious materials. Adv. Cem. Based Mater. 4, 48–57 (1996)Google Scholar
  31. 31.
    Janotka, I., Puertas, F., Palacios, M., Kuliffayova, M., Varga, C.: Metakaolin sand-blended-cement pastes: rheology, hydration process and mechanical properties. Construct. Build. Mater. 24(5), 791–802 (2010)CrossRefGoogle Scholar
  32. 32.
    Jin, X., Li, Z.: Effects of mineral admixture on properties of young concrete. J. Mater. Civil Eng. 15(5), 435–442 (2003)CrossRefGoogle Scholar
  33. 33.
    Khatib, J.M., Mangat, P.S.: Absorption characteristics of concrete as a function of location relative to casting position. Cem. Concr. Res. 25(5), 999–1010 (1995)CrossRefGoogle Scholar
  34. 34.
    Khatib, J.M., Wild, S.: Pore size distribution of metakaolin paste. Cem. Concr. Res. 26(10), 1545–1553 (1996)CrossRefGoogle Scholar
  35. 35.
    Khatib, J.M., Wild, S.: Sulfate resistance of metakaolin mortar. Cem. Concr. Res. 28(1), 83–92 (1998)CrossRefGoogle Scholar
  36. 36.
    Khatib, J.M., Clay, R.M.: Absorption characteristics of metakaolin concrete. Cem. Concr. Res. 34(1), 19–29 (2004)CrossRefGoogle Scholar
  37. 37.
    Khatib, J.M.: Metakaolin concrete at a low water to binder ratio. Construct. Build. Mater. 22(8), 1691–1700 (2008)CrossRefGoogle Scholar
  38. 38.
    Kim, H.S., Lee, S.H., Moon, H.Y.: Strength properties and durability aspects of high strength concrete using Korean metakaolin. Construct. Build. Mater. 21(6), 1229–1237 (2007)CrossRefGoogle Scholar
  39. 39.
    Kinuthia, J.M., Wild, S., Sabir, B.B., Bai, J.: Self-compensating autogenous shrinkage in Portland cement–metakaolin-fly ash pastes. Adv. Cem. Res. 12(1), 35–43 (2000)CrossRefGoogle Scholar
  40. 40.
    Klimesch, D.S., Ray, A.: Autoclaved cement-quartz pastes with metakaolin additions. Adv. Cem. based Mater. 7(3–4), 109–117 (1998)CrossRefGoogle Scholar
  41. 41.
    Kostuch, J.A., Walters, G,V., Jones, T.R.: High performance concrete incorporating metakaolin—a review, pp. 1799–1811. Concrete 2000, University of Dundee (1993)Google Scholar
  42. 42.
    Lagier, F., Kurtis, K.E.: Influence of Portland cement composition on early age reactions with metakaolin. Cem. Concr. Res. 37(10), 1411–1417 (2007)CrossRefGoogle Scholar
  43. 43.
    Larbi, J.A., Bijen, J.M.: Influence of pozzolans on the Portland cement paste–aggregate interface in relation to diffusion of ions and water absorption in concrete. Cem. Concr. Res. 22, 551–562 (1992)CrossRefGoogle Scholar
  44. 44.
    Lee, S.T., Moon, H.Y., Hooton, R.D., Kim, J.P.: Effect of solution concentrations and replacement levels of metakaolin on the resistance of mortars exposed to magnesium sulfate solutions. Cem. Concr. Res. 35(7), 1314–1323 (2005)CrossRefGoogle Scholar
  45. 45.
    Li, Z., Ding, Z.: Property improvement of Portland cement by incorporating with metakaolin and slag. Cem. Concr. Res. 33(4), 579–584 (2003)CrossRefGoogle Scholar
  46. 46.
    Lyubimova, T.Y., Pinus, E.R.: Crystallization structure in the contact zone between aggregate and Cem.. Concr. Kolloidn. Z. (USSR) 24(5), 578–587 (1962)Google Scholar
  47. 47.
    Murat, M.: Hydration reaction and hardening of calcined clays and related mineral-I Preliminary investigations on metakaolin. Cem. Concr. Res. 13(2), 259–266 (1983)CrossRefGoogle Scholar
  48. 48.
    Oriol, M., Pera, J.: Pozzolanic activity of metakaolin under microwave treatment. Cem. Concr. Res. 25(2), 265–270 (1995)CrossRefGoogle Scholar
  49. 49.
    Poon, C.S., Lam, L., Kou, S.C., Wong, Y.L., Wong, R.: Rate of pozzolanic reaction of metakaolin in high-performance Cem. pastes. Cem. Concr. Res. 31(9), 1301–1306 (2001)CrossRefGoogle Scholar
  50. 50.
    Poon, C.S., Azhar, S., Anson, M., Wong, Y.L.: Performance of metakaolin concrete at elevated temperatures. Cem. Concr. Compos. 25(1), 83–89 (2003)CrossRefGoogle Scholar
  51. 51.
    Poon, C.S., Kou, S.C., Lam, L.: Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construct. Build. Mater. 20(10), 858–865 (2006)CrossRefGoogle Scholar
  52. 52.
    Potgieter-Vermaak, S.S., Potgieter, J.H.: Metakaolin as an extender in South African cement. J. Mater. Civil Eng. 18(4), 619–623 (2006)CrossRefGoogle Scholar
  53. 53.
    Qian, X., Li, Z.: The relationships between stress and strain for high-performance concrete with metakaolin. Cem. Concr. Res. 31(11), 1607–1611 (2001)CrossRefGoogle Scholar
  54. 54.
    Ramlochan, T., Thomas, M., Gruber, K.A.: The effect of metakaolin on alkali–silica reaction in concrete. Cem. Concr. Res. 30(3), 339–344 (2000)CrossRefGoogle Scholar
  55. 55.
    Razak, H.A., Chai, H.K., Wong, H.S.: Near surface characteristics of concrete containing supplementary cementing materials. Cem. Concr. Compos. 26(7), 883–889 (2004)Google Scholar
  56. 56.
    Rojas, M.F., Cabrera, J.: The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin–lime–water systems. Cem. Concr. Res. 32(1), 133–138 (2002)CrossRefGoogle Scholar
  57. 57.
    Rojas, M.F., Sánchez de Rojas, M.I.: The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60°C. Cem. Concr. Res. 33(5), 643–649 (2003)CrossRefGoogle Scholar
  58. 58.
    Rojas, M.F.: Study of hydrated phases present in a MK–lime system cured at 60°C and 60 months of reaction. Cem. Concr. Res. 36(5), 827–831 (2006)CrossRefGoogle Scholar
  59. 59.
    Roy, D.M., Arjunan, P., Silsbee, M.R.: Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cem. Concr. Res. 31(12), 1809–1813 (2001)CrossRefGoogle Scholar
  60. 60.
    Saito, M., Kawamura, M.: Resistance of the cement–aggregate interfacial zone to the propagation of cracks. Cem. Concr. Res. 16(5), 653–661 (1986)Google Scholar
  61. 61.
    Salvador, S.: Pozzolanic properties of flash-calcined kaolinite: a comparative study with soak-calcined products. Cem. Concr. Res. 25(1), 102–112 (1995)CrossRefGoogle Scholar
  62. 62.
    Sha, W., Pereira, G.B.: Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cem. Concr. Compos. 23(6), 455–461 (2001)CrossRefGoogle Scholar
  63. 63.
    Shvarzman, A., Kovler, K., Grader, G.S., Shter, G.E.: The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem. Concr. Res. 33(3), 405–416 (2003)CrossRefGoogle Scholar
  64. 64.
    Sun, W., Zhang, Y.-S., Lin, W., Liu, Z.-Y.: In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM. Cem. Concr. Res. 34(6), 935–940 (2004)CrossRefGoogle Scholar
  65. 65.
    Tafraoui, A., Escadeillas, G., Lebaili, S., Vidal, T.: Metakaolin in the formulation of UHPC. Construct. Build. Mater. 23(2), 669–674 (2009)CrossRefGoogle Scholar
  66. 66.
    Thomas, M.D.A., Gruber, K.A., Hooton, R.D.: The use of high reactivity metakaolin in high performance concrete. 1st Engineering Foundation Conference on High Strength Concrete, Hawaii 1997, 517–530 (1997)Google Scholar
  67. 67.
    Wild, S., Khatib, J.M., Jones, A.: Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem. Concr. Res. 26(10), 1537–1544 (1996)CrossRefGoogle Scholar
  68. 68.
    Wild, S., Khatib, J.M.: Portlandite Consumption in metakaolin cement pastes and mortars. Cem. Concr. Res. 27(1), 137–146 (1997)CrossRefGoogle Scholar
  69. 69.
    Wild, S., Khatib, J., Roose, J.L.: Chemical and autogenous shrinkage of Portland cement–metakaolin pastes. Adv. Cem. Res. 10(3), 109–119 (1998)Google Scholar
  70. 70.
    Wong, H.S., Razak, H.A.: Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance. Cem. Concr. Res. 35(4), 696–702 (2005)CrossRefGoogle Scholar
  71. 71.
    Zhang, M.H., Malhotra, V.M.: Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cem. Concr. Res. 25(8), 1713–1725 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Department of Civil EngineeringThapar UniversityPatialaIndia
  2. 2.Structural Engineering, Center of Excellence for Concrete Research and Testing College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations