Ground Granulated Blast Furnace Slag

  • Rafat Siddique
  • Mohammad Iqbal Khan
Part of the Engineering Materials book series (ENG.MAT., volume 37)


Ground granulated blast furnace slag (GGBS) is a by-product from the blast-furnaces used to make iron. Blast-furnaces are fed with controlled mixture of iron-ore, coke and limestone, and operated at a temperature of about 1,500°C. When iron-ore, coke and limestone melt in the blast furnace, two products are produced—molten iron, and molten slag. The molten slag is lighter and floats on the top of the molten iron. The molten slag comprises mostly silicates and alumina from the original iron ore, combined with some oxides from the limestone. The process of granulating the slag involves cooling of molten slag through high-pressure water jets. This rapidly quenches the slag and forms granular particles generally not bigger than 5 mm. The rapid cooling prevents the formation of larger crystals, and the resulting granular material comprises around 95% non-crystalline calcium-aluminosilicates. The granulated slag is further processed by drying and then grinding in a rotating ball mill to a very fine powder, which is GGBS.


Compressive Strength Portland Cement Silica Fume Ordinary Portland Cement Pozzolanic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ACI Committee 226: Ground granulated blast furnace slag as a cementitious constituent in concrete. ACI Mater. J. 84(4), 327–342 (1987)Google Scholar
  2. 2.
    Aldea, C., Young, F., Wang, K., Shah, S.P.: Effect of curing conditions on properties of concrete using slag replacement. Cem. Concr. Res. 30(3), 465–472 (2000)CrossRefGoogle Scholar
  3. 3.
    Al-Amoudi, O.S.B., Rasheeduzzafar, M.M., Al-Mana, A.I.: Prediction of long-term corrosion resistance of plain and blended cement concretes. ACI Mater. J. 90(6), 564–570 (1993)Google Scholar
  4. 4.
    ASTM C 232: Standard test methods for bleeding of concrete. ASTM Standards. 4.02:13942, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken (1992)Google Scholar
  5. 5.
    ASTM C666-Part A: Standard test method for resistance of concrete to rapid freezing and thawing. Annual Book of ASTM Standards, vol. 03.02, 19428–2959, American Society for Testing and Materials, West Conshohocken (1997)Google Scholar
  6. 6.
    ASTM C 989: Standard specification for ground granulated blast-furnace slag for use in concrete and mortars. Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken (1999)Google Scholar
  7. 7.
    ASTM C1202: Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. Annual Book of ASTM Standards, vol. 4.02, American Society for Testing and Materials, West Conshohocken (1997) Google Scholar
  8. 8.
    ASTM C 876: Standard test method for half-cell potentials of uncoated reinforcing steel in concrete, Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken (1991)Google Scholar
  9. 9.
    ASTM C 1012-95a: Standard test method for length change of hydraulic cement mortars exposed to a sulfate solution. Annual book of ASTM Standards, Section 4—Construction, Cement; Lime; Gypsum. vol. 04.01, pp. 450–456. American Society for Testing and Materials, West Conshohocken (1995)Google Scholar
  10. 10.
    ASTM C39/C39 M: Standard test method for compressive strength of cylindrical concrete specimens, Annual Book of ASTM Standards, vol. 4.02, American Society for Testing and Materials, West Conshohocken (2004)Google Scholar
  11. 11.
    Atis, C.D., Bilim, C.: Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag. Build. Environ. 42(8), 3060–3065 (2007)CrossRefGoogle Scholar
  12. 12.
    Binici, H., Cagatay, I.H., Shah, T., Kapur, S.: Mineralogy of plain Portland and blended cement pastes. Build. Environ. 43(7), 1318–1325 (2008)CrossRefGoogle Scholar
  13. 13.
    Babu, K.G., Kumar, V.S.R.: Efficiency of GGBS in concrete. Cem. Concr. Res. 30(7), 1031–1036 (2000)CrossRefGoogle Scholar
  14. 14.
    Ballim, Y., Graham, P.C.: A maturity approach to the rate of heat evolution in concrete. Mag. Concr. Res. 55(3), 249–256 (2003)CrossRefGoogle Scholar
  15. 15.
    Ballim, Y., Graham, P.C.: The effects of supplementary cementing materials in modifying the heat of hydration of concrete. Mater. Struct. 42, 803–811 (2009)CrossRefGoogle Scholar
  16. 16.
    Basheer, P.A.M., Gilleece, P.R.V., Long, A.E., McCarter, W.J.: Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration. Cem. Concr. Compos. 24(5), 437–449 (2002)CrossRefGoogle Scholar
  17. 17.
    Bouikni, A., Swamy, R.N., Bali, A.: Durability properties of concrete containing 50% and 65% slag. Construct. Build. Mater. 23(8), 2836–2845 (2009)CrossRefGoogle Scholar
  18. 18.
    Cao, H.T., Bucea, L., Ray, A., Yozghatlian, S.: The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements. Cem. Concr. Compos. 19(2), 161–171 (1997)CrossRefGoogle Scholar
  19. 19.
    Cheron, M., Lardinois, C.: In: Proceedings of the 5th International Congress on the Chemistry of Cement, Tokyo, vol. IV, pp. 277–285 (1968)Google Scholar
  20. 20.
    Cheng, A., Huang, R., Wu, J.K., Chen, C.H.: Influence of GGBS on durability and corrosion behavior of reinforced concrete. Mater. Chem. Phys. 93, 404–411 (2005)CrossRefGoogle Scholar
  21. 21.
    Cakir, Ö., Aköz, F.: Effect of curing conditions on the mortars with and without GGBFS. Construct. Build. Mater. 22(3), 308–314 (2008)CrossRefGoogle Scholar
  22. 22.
    Daube, J., Bakker, R.: Portland blast-furnace slag cement: a review. Blended Cement, ASTM-STP 897 pp. 5–14 (1986)Google Scholar
  23. 23.
    Dhir, R.K., El-Mohr, M.A.K., Dyer, T.D.: Chloride binding in GGBS concrete. Cem. Concr. Res. 26(12), 1767–1773 (1996)CrossRefGoogle Scholar
  24. 24.
    Douglas, E., Bilodeau, A., Brandstetr, J.: Alkali activated ground granulated blast-furnace slag concrete: preliminary investigation. Cem. Concr. Res. 21(1), 101–108 (1991)CrossRefGoogle Scholar
  25. 25.
    Elahi, A., Basheer, P.A.M., Nanukuttan, S.V., Khan, O.U.Z.: Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 24(3), 292–299 (2010)CrossRefGoogle Scholar
  26. 26.
    El-Darwish, I., Kurdi, A., Mahmoud, H., El-Kair, H.A.: Mechanical properties and durability of Portland cement concrete incorporating ground steel making slag. AEJ Alex. Eng. J. 36, 1–14 (1997)Google Scholar
  27. 27.
    Fearson, J.P.H.: Sulfate resistance of combination of Portland cement and granulated blast furnace slag. vol. 2, pp. 1495–1524. ACI Special Publication SP-91, Dr. Farmington Hills (1986)Google Scholar
  28. 28.
    Gao, J.M., Qian, C.X., Liu, H.F., Wang, B., Li, L.: ITZ microstructure of concrete containing GGBS. Cem. Concr. Res. 35(7), 1299–1304 (2005)CrossRefGoogle Scholar
  29. 29.
    Guo, L.P., Sun, W., Zheng, K.R., Chen, H.J., Liu, B.: Study on the flexural fatigue performance and fractal mechanism of concrete with high proportions of ground granulated blast-furnace slag. Cem. Concr. Res. 37(2), 242–250 (2007)CrossRefGoogle Scholar
  30. 30.
    Gee, K.H.: The potential for slag in blended cements. In: Proceedings of the 14th International Cement Seminar, Rock Products, pp. 51–53 (1979)Google Scholar
  31. 31.
    Gollop, R.S., Taylor, H.F.W.: Micro structural and micro analytical studies of sulfate attack IV. Reactions of a slag cement paste with sodium and magnesium sulfate solutions. Cem. Concr. Res. 26(7), 1013–1028 (1996)CrossRefGoogle Scholar
  32. 32.
    Hester, D., McNally, C., Richardson, M.: A study of the influence of slag alkali level on the alkali–silica reactivity of slag concrete. Construct. Build. Mater. 19(9), 661–665 (2005)CrossRefGoogle Scholar
  33. 33.
    Higgins, D.D.: Increased sulfate resistance of GGBS concrete in the presence of carbonate. Cem. Concr. Compos. 25(8), 913–919 (2003)CrossRefGoogle Scholar
  34. 34.
    Higgins, D.D., Crammond, N.J.: Resistance of concrete containing GGBS to the thaumasite form of sulfate attack. Cem. Concr. Compos. 25(8), 921–929 (2003)CrossRefGoogle Scholar
  35. 35.
    Hogan, F.J., Meusel, J.W.: Evaluation for durability and strength development of a ground granulated blast furnace slag. Cem. Concr. Aggreg. 3(1), 40–52 (1981)CrossRefGoogle Scholar
  36. 36.
    Hooton, R.D., Titherington, M.P.: Chloride resistance of high-performance concretes subjected to accelerated curing. Cem. Concr. Res. 34(9), 1561–1567 (2004)CrossRefGoogle Scholar
  37. 37.
    Huang, R., Yeih, W.C.: Assessment of chloride diffusion in high strength concrete using the accelerated ionic migration test. J. Chin. Inst. Eng. 20, 39–45 (1997)Google Scholar
  38. 38.
    Hui-sheng, S., Bi-wan, X., Xiao-chen, Z.: Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Construct. Build. Mater. 23(5), 1980–1985 (2009)CrossRefGoogle Scholar
  39. 39.
    Hwang, C.L., Lin, C.Y.: Strength development of blended blast furnace slag cement mortars. ACI SP 91, 1323–1340 (1986)Google Scholar
  40. 40.
    Jau, W.C., Tsay, D.S.: A study of the basic engineering properties of slag cement concrete and its resistance to sea water corrosion. Cem. Concr. Res. 28(10), 1363–1371 (1998)CrossRefGoogle Scholar
  41. 41.
    Jianyong, L., Yan, Y.: A study on creep and drying shrinkage of high performance concrete. Cem. Concr. Res. 31(8), 1203–1206 (2001)CrossRefGoogle Scholar
  42. 42.
    Khatib, J.M., Hibbert, J.J.: Selected engineering properties of concrete incorporating slag and metakaolin. Construct. Build. Mater. 19(6), 460–472 (2005)CrossRefGoogle Scholar
  43. 43.
    Knaack, U., Stark, J.: Frost and frost-deicing salt resistance of super-sulfated cement concrete, frost resistance of concrete. In: Proceedings of the International RILEM Workshop on Resistance of Concrete to Freezing and Thawing with or Without De-icing Chemicals. pp. 139–146. Essen, Germany (1997)Google Scholar
  44. 44.
    Kwon, Y.: A study on the alkali-aggregate reaction in high-strength concrete with particular respect to the ground granulated blast-furnace slag effect. Cem. Concr. Res. 35(7), 1305–1313 (2005)CrossRefGoogle Scholar
  45. 45.
    Li, G., Zhao, X.: Properties of concrete incorporating fly ash and ground granulated blast-furnace slag. Cem. Concr. Compos. 25(3), 293–299 (2003)CrossRefGoogle Scholar
  46. 46.
    Li, S., Roy, D.M.: Investigation of relations between porosity, pore structure and chloride diffusion of fly ash blended cement pastes. Cem. Concr. Res. 16(5), 749–759 (1986)CrossRefGoogle Scholar
  47. 47.
    Luo, R., Cai, Y., Wang, C., Huang, X.: Study of chloride binding and diffusion in GGBS concrete. Cem. Concr. Res. 33(1), 1–7 (2003)CrossRefGoogle Scholar
  48. 48.
    Malhotra, V.M., Zhang, M.H., Read, P.H., Ryell, J.: Long-term mechanical properties and durability characteristics of high strength/high-performance concrete incorporating supplementary cementing materials under outdoor exposure conditions. ACI Mater. J. 97(5), 518–525 (2000)Google Scholar
  49. 49.
    Mangat, P.S., El-Khatib, J.M.: Influence of initial curing on sulfate resistance of blended cement concrete. Cem. Concr. Res. 22(6), 1089–1100 (1992)CrossRefGoogle Scholar
  50. 50.
    Mangat, P.S., Molloy, B.T.: Influence of PFA, slag and microsilica on chloride induced corrosion of reinforcement in concrete. Cem. Concr. Res. 21(5), 819–834 (1991)CrossRefGoogle Scholar
  51. 51.
    Mehta, P.K.: Concrete:Structure, Properties and Materials. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  52. 52.
    Meusel, J.W., Rose, J,H.: Production of granulated blast furnace slag at sparrows point and the workability and strength potential of concrete incorporating the slag. vol. 79, pp. 867–890. ACI Special Publication SP, Dr. Farmington Hills (1983)Google Scholar
  53. 53.
    Miura, T., Iwaki, I.: Strength development of concrete incorporating high levels of ground granulated blast-furnace slag at low temperatures. ACI Mater. J. 97(1), 66–70 (2000)Google Scholar
  54. 54.
    Nanaumi, T., Ayuta, K., Yamakawa, T.: Frost resistance of antiwashout underwater concrete containing expanded plastic micro-spheres and blast-furnace slag. Semento Konkurito Ronbunshu 51, 90–95 (Chem. Abstr. 128, 208152) (1997)Google Scholar
  55. 55.
    Neville, A.M.: Properties of Concrete, 3rd edn. Pitman, London (1981)Google Scholar
  56. 56.
    Olorunsogo, F.T.: Particle size distribution of GGBS and bleeding characteristics of slag cement mortars. Cem. Concr. Res. 28(6), 907–919 (1998)CrossRefGoogle Scholar
  57. 57.
    Oner, A., Akyuz, S.: An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem. Concr. Compos. 29(6), 505–514 (2007)CrossRefGoogle Scholar
  58. 58.
    Osborne, G.J.: The effectiveness of a carbonated outer layer to concrete in the prevention of sulfate attack. In: Proceedings of International Conference on the Protection of Concrete, University of Dundee, UK (1990)Google Scholar
  59. 59.
    Pal, S.C., Mukherjee, A., Pathak, S.R.: Corrosion behavior of reinforcement in slag concrete. ACI Mater. J. 99(6), 1–7 (2002)Google Scholar
  60. 60.
    Pavía, S., Condren, E.: Study of the durability of OPC versus GGBS concrete on exposure to silage effluent. ASCE J. Mater. Civ. Eng. 20(4), 313–320 (2008)CrossRefGoogle Scholar
  61. 61.
    Puertas, F., Palacios, M., Gil-Maroto, A., Vázquez, T.: Alkali-aggregate behaviour of alkali-activated slag mortars: effect of aggregate type. Cem. Concr. Compos. 31(5), 277–284 (2009)CrossRefGoogle Scholar
  62. 62.
    Quillin, K., Osborne, G., Majumdar, A., Singh, B.: Effects of w/c ratio and curing conditions on strength development in BRECEM concretes. Cem. Concr. Res. 31(4), 627–632 (2001)CrossRefGoogle Scholar
  63. 63.
    RILEM draft recommendation: Measurement of hardened concrete carbonation depth. Mater. Struct. 3(102), 435–90 (1984)Google Scholar
  64. 64.
    Roy, D.M., Idorn, G.M.: Hydration, structure, and properties of blast furnace slag cement, mortars, and concrete. Am. Concr. Inst. J. 79(6), 444–457 (1982)Google Scholar
  65. 65.
    Roy, D.M., Jiang, W., Silsbee, M.R.: Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem. Concr. Res. 30(12), 1879–1884 (2000)CrossRefGoogle Scholar
  66. 66.
    Stark, J., Frost resistance with and without deicing salt—a purely physical problem, frost resistance of concrete. In: Proceedings of the International RILEM Workshop on Resistance of Concrete to Freezing and Thawing with or Without De-Icing Chemicals. pp. 83–99. Essen, Germany (1997)Google Scholar
  67. 67.
    Stark, J., Ludwig, H.M.: Freeze–thaw and freeze-deicing salt resistance of concretes containing cement rich in granulated blast furnace slag. ACI Mater. J. 94(1), 47–55 (1997)Google Scholar
  68. 68.
    Stutterheim, N.: Portland blast furnace cements—a case for separate grinding of slag. In: Fifth International Symposium on the Chemistry of Cement, Tokyo, pp. 270–276 (1968) (Supplementary Paper IV-113)Google Scholar
  69. 69.
    Sulapha, P., Wong, S.F., Wee, T.H., Swaddiwudhipong, S.: Carbonation of concrete containing mineral admixtures. J. Mater. Civ. Eng. 15(2), 134–143 (2003)CrossRefGoogle Scholar
  70. 70.
    Tasong, W.A., Wild, S., Tilley, R.J.D.: Mechanism by which ground granulated blast furnace slag prevents sulfate attack of lime stabilized kaolinite. Cem. Concr. Res. 29(7), 975–982 (1999)CrossRefGoogle Scholar
  71. 71.
    Torii, K., Sasatani, T., Kawamura, M.: Effects of fly ash, blast furnace slag, and silica fume on resistance of mortar to calcium chloride attack. In: Proceedings of Fifth International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, SP-153 vol. 2, pp. 931–949, American Concrete Institute (1995)Google Scholar
  72. 72.
    Ujhelyi, J.E., Ibrahim, A.J.: Hot weather concreting with hydraulic additives. Cem. Concr. Res. 21(2–3), 345–354 (1991)CrossRefGoogle Scholar
  73. 73.
    Wainwright, P.J., Ait-Aider, H.: The influence of cement source and slag additions on the bleeding of concrete. Cem. Concr. Res. 25(7), 1445–1456 (1995)CrossRefGoogle Scholar
  74. 74.
    Wainwright, P.J., Rey, N.: The influence of ground granulated blast furnace slag (GGBS) additions and time delay on the bleeding of concrete. Cem. Concr. Compos. 22(4), 253–257 (2000)CrossRefGoogle Scholar
  75. 75.
    Wan, H., Shui, Z., Lin, Z.: Analysis of geometric characteristics of GGBS particles and their influences on cement properties. Cem. Concr. Res. 34(1), 133–137 (2004)CrossRefGoogle Scholar
  76. 76. Concrete mix design using GGBS. Ecocem Ireland Ltd. Dublin
  77. 77.
    Xu, Y.: The influence of sulfates on chloride binding and pore solution chemistry. Cem. Concr. Res. 27(12), 1841–1850 (1997)CrossRefGoogle Scholar
  78. 78.
    Yeau, K.Y., Kim, E.K.: An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag. Cem. Concr. Res. 35(7), 1391–1399 (2005)CrossRefGoogle Scholar
  79. 79.
    Yuksel, I., Bilir, T., Ozkan, O.: Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Build. Environ. 42(7), 2651–2659 (2007)CrossRefGoogle Scholar
  80. 80.
    Zhang, Y.J., Zhao, Y.L., Li, H.H., Xu, D.L.: Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J. Mater. Sci. 43(22), 7141–7147 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Department of Civil EngineeringThapar UniversityPatialaIndia
  2. 2.Structural Engineering, Center of Excellence for Concrete Research and Testing College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations