Similarity Measurement for Animation Movies

  • Alexandre Benoit
  • Madalina Ciobotaru
  • Patrick Lambert
  • Bogdan Ionescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6523)


When considering the quantity of multimedia content that people and professionals accumulate day by day on their storage devices, the necessity of appropriate intelligent tools for searching or navigating, becomes an issue. Nevertheless, the richness of such media is difficult to handle with today’s video analysis algorithm. In this context, we propose a similarity measure dedicated to animation movies. This measure is based on the fuzzy fusion of low level descriptors. We focus on the use of a Choquet Integral based fuzzy approach which is proved to be a good solution to take into account complementarity or conflict between fused data and so to model a human like similarity measure. Subjective tests with human observers have been carried out to validate the model.


Movie similarity measure fuzzy fusion animation movies video sequences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Worring, M., Schreiber, G.: Semantic image and video indexing in broad domains. IEEE Trans. on Multimedia 9, 909–911 (2007)CrossRefGoogle Scholar
  2. 2.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 2(1), 1–19 (2006)Google Scholar
  3. 3.
    Brezeale, D., Cook, D.J.: Automatic Video Classification: A Survey of the Literature. IEEE Trans. on Systems, Man and Cybernetics, Part C: Applications and Reviews 38(3), 416–430 (2008)CrossRefGoogle Scholar
  4. 4.
    Roach, M.J., Mason, J.S.D.: Video Genre Classification using Dynamics. In: IEEE Inter. Conf. on Acoustics, Speech and Signal Processing, Utah, USA, pp. 1557–1560 (2001)Google Scholar
  5. 5.
    Yuan, X., Lai, W., Mei, T., Hua, X.S., Wu, X.Q., Li, S.: Automatic video genre categorization using hierarchical SVM. In: IEEE Inter. Conf. on Image Processing, Atlanta, USA, pp. 2905–2908 (2006)Google Scholar
  6. 6.
    Montagnuolo, M., Messina, A.: Parallel Neural Networks for Multimodal Video Genre Classification. Multimedia Tools and Applications 41(1), 125–159 (2009)CrossRefGoogle Scholar
  7. 7.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(1) (2008)Google Scholar
  8. 8.
    Wu, Y., Zhuang, Y., Pan, Y.: Contentbased video similarity model. In: Proceedings of the Eighth ACM International Conference on Multimedia, MULTIMEDIA 2000, New York, NY, USA, pp. 465–467 (2000)Google Scholar
  9. 9.
    Zhao, Y., Zhou, X.-z., Tang, G.: Audiovisual integration for racquet sports video retrieval. In: Li, X., Zaïane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 673–680. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Cheung, S.S., Zakhor, A.: Efficient video similarity measurement with video signature. In: ICIP, pp. 621–624 (2002)Google Scholar
  11. 11.
    Peng, Y., Ngo, C.-W.: Clip-based similarity measure for hierarchical video retrieval. In: Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, MIR 2004, New York, NY, USA, pp. 53–60 (2004)Google Scholar
  12. 12.
    Lienhart, R., Effelsberg, W., Jain, R.: Visualgrep: A systematic method to compare and retrieve video sequences. Multimedia Tools Appl. 10(1), 47–72 (1999)CrossRefGoogle Scholar
  13. 13.
    ITU, Methodology for the subjective assessment of the quality of television pictures, Recommendation itur bt.500-11, International Telecommunication Union - Radiocommunication Sector (2002)Google Scholar
  14. 14.
    Ionescu, B., Coquin, D., Lambert, P., Buzuloiu, V.: A fuzzy color-based approach for understanding animated movies content in the indexing task. EURASIP Journal on Image and Video Processing (2008)Google Scholar
  15. 15.
    Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in choquet integral based multi-attribute utility theory: Applications of the kappalab r package. European Journal of Operational Research 186(2), 766–785 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pearson, K.: Mathematical contributions to the theory of evolution. III. regression, heredity, and panmixia. Royal Society of London Philosophical Transactions Series A 187, 253–318 (1896)CrossRefGoogle Scholar
  17. 17.
    VQEG, Final report from the video quality experts group on the validation of objective models of video quality assessment, Technical Report, Video Quality Experts Group (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandre Benoit
    • 1
  • Madalina Ciobotaru
    • 1
  • Patrick Lambert
    • 1
  • Bogdan Ionescu
    • 2
  1. 1.LISTICUniversite de SavoieAnnecy le VieuxFrance
  2. 2.LAPIUniversity ”Politehnica” BucharestRomania

Personalised recommendations