Skip to main content

Utilization of Lignocellulose-feeding Insects for Viable Biofuels: an Emerging and Promising Area of Entomological Science

  • Chapter

Abstract

Most insects are unable to use plant cell walls as their main food sources, but some insects subsist on lignocellulosic biomass from agricultural crops to forest woody substrates as their only foods, such as in the case of termites (all seven families), wood-feeding roaches (Blattidae, Cryptoceridae), beetles (Anobiidae, Buprestidae, Cerambycidae, Scarabaeidae), wood wasps (Siricidae), leaf-shredding aquatic insects (Pteronarcidae, Limnephilidae, Tipulidae), silver fish (Lepismatidae), leaf-cutting ants (Formicidae), etc. Cellulose digestion has been demonstrated in more than 20 families representing ten distinct insect orders, e. g. Thysanura, Plecoptera, Dictyoptera, Orthoptera, Isoptera, Coleoptera, Trichoptera, Hymenoptera, Phasmida, and Diptera. The ability of these insects to feed on wood, foliage and detritus has recently stimulated extensive investigations into the mechanisms of how these insects digest the structural and recalcitrant lignocellulose in their foods. With these studies, scientists would possibly advance biofuel technologies with the discovery of novel lignocellulolytic enzymes and a better understanding of the bioconversion mechanisms that breakdown plant cell walls inside the insect’s gut. Producing monomeric sugars from cellulose or hemicellulose with high yields and low cost is far more difficult than deriving them from sugar- or starch-containing crops. This difficulty is primarily due to a lack of efficient and economic lignocellulolytic enzymes that convert rigid plant cell walls to their monomeric pentose and hexose sugar subunits. However, termites, especially wood-feeding termites (including lower and higher termites), are a unique group of lignocellulose-feeding insects exhibiting incredible wood degradation capabilities, which accomplish lignocellulose digestion using specialized gut physiology, endogenously produced digestive enzymes, and via their specialized association with prokaryotic and eukaryotic gut symbionts. It is believed that the guts of these lignocellulosefeeding insects harbor diverse symbiotic microbes and endogenous enzymes that could be used as a rich source of lignocellulases as well as functional gene resources for improving the conversion of wood or waste plant biomass to valuable biofuels. Recent studies showed that lignocellulose-feeding insects and their symbionts have not only cellulolytic or lignin decomposition activity, but also aromatic hydrocarbon degradation. Thus, as an emerged new area of entomological science, utilization of lignocellulose-feeding insects would be very valuable for viable biofuels production made from lignocellulosic biomass. Clearly, understanding the mechanisms of the biomass digestion in these insect guts could potentially shed light on efficient, low cost, lignocellulose-based biofuel production systems. This review addresses various lignocellulolytic systems, the potential values, various challenges, and opportunities that exist for investigating lignocellulose-feeding insects in biofuels production, as well as possible future research directions.

Keywords

  • lignocellulose
  • insect
  • lignocellulase
  • lignocellulolytic system
  • biofuels
  • bioreactor

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Bignell D E, Higashi M. Termites: evolution, sociality, symbiosis, ecology. Dordrecht/ Boston/London: Kluwer Academic Publishers, 2000.

    Google Scholar 

  • Abe T, Higashi M. Cellulose centered perspective on terrestrial community structure. Okos, 1991, 60: 127–133.

    Google Scholar 

  • Abo-Khatwa N. Termitomycetes: a new source of potent cellulases. J. King Abulaziz Univ. Sci., 1989, 1: 51–59.

    Google Scholar 

  • Abo-Khatwa N. Cellulase of fungus-growing termites: a new hypothesis on its origin. Experientia, 1978, 34: 559–560.

    CAS  Google Scholar 

  • Abraham S. Toward a more secure and cleaner energy future for America: national hydrogen energy roadmap, production, delivery, storage, conversion, applications, public education and outreach. Washington, DC: U. S. Department of Energy, 2002.

    Google Scholar 

  • Adams L, Boopathy R. Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Bioresource Technol., 2005, 96: 1592–1598.

    CAS  Google Scholar 

  • Agarwal A K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progr. Energy. Combus. Sci., 2007, 33: 233–271.

    CAS  Google Scholar 

  • Aman R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59: 143–169.

    Google Scholar 

  • Baeza J, Freer J. Wood and cellulosic chemistry, 2nd ed. New York: Marcel Dekker Inc, 2001.

    Google Scholar 

  • Bayon C. Modifications ultrastructurales des parois vegetales dans le tube digestif d’une larva xylophage Oryctes nasicornis (Coleoptera, Scarabaeidae): role des bacteries. Can. J. Zool., 1981, 59: 2020–2029.

    Google Scholar 

  • Bayon C. Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae). J. Insect Physiol., 1980, 26: 819–828.

    CAS  Google Scholar 

  • Béguin P, Aubert J P. The biological degradation of cellulose. FEMS Microbiol. Rev., 1994, 13: 25–58.

    PubMed  Google Scholar 

  • Berchtold M, Chatzinotas A, Schönhuber W, et al. Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis. Arch. Microbiol., 1999, 172: 407–416.

    PubMed  CAS  Google Scholar 

  • Berchtold M, König H. Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. System. Appl. Microbiol., 1996, 19: 66–73.

    Google Scholar 

  • Berchtold M, Breunig A, König H. Culture and phylogenetic characterization of Trichomitus trypanoides Duboscque & Grasse 1924, n. comb.: a trichomond flagellate isolated from the hindgut of the termite Reticulitermes santonensis Feytaud. J. Eukar. Microbiol., 1995, 42: 388–391.

    CAS  Google Scholar 

  • Bignell D E. Termites as soil engineers and soil processors. // König H. and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 183–220.

    Google Scholar 

  • Bignell D E. Introduction to symbiosis. // Abe T, Bignell D E and Higashi M. Termites: evolution, sociality, symbiosis, ecology. Dordrecht/Boston/ London: Kluwer Academic Publishers, 2000: 189–208.

    Google Scholar 

  • Bignell D E. An experimental study of cellulose and hemicellulose degradation in the alimentary canal of the American cockroach. Can. J. Zool., 1977, 55: 579–589.

    CAS  Google Scholar 

  • Bignell D E, Anderson J M, Crosse R. Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus. FEMS Micobiol. Ecol., 1991, 85: 151–160.

    Google Scholar 

  • Bignell D E, Oskarsson H, Anderson J M. Structure, microbial associations and function of the socalled “mixed segment” of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae). J. Zool. Lond., 1983, 201: 445–480.

    Google Scholar 

  • Bignell D E, Anderson J M. Determination of pH and oxygen status in the guts of lower and higher termites. J. Insect Physiol., 1980, 26: 183–188.

    CAS  Google Scholar 

  • Boytles D. Bioenergy technology-Thermodynamics and costs. New York: Willey, 1984.

    Google Scholar 

  • Brauman A, Kane M D, Labat M, et al. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science, 1992, 257: 1384–1386.

    PubMed  CAS  Google Scholar 

  • Braumann A, Dore J, Eggleton P, et al. Molecular phylogenetic profiling of prokaryote communities in guts of termites with different feeding habits. FEMS Microbiol. Ecol., 2001, 35: 27–36.

    Google Scholar 

  • Breznak J A. Acetogenesis from carbon dioxide in termite guts. // Drake H L. Acetogenesis. New York: Chapman & Hal, 1994: 303–330.

    Google Scholar 

  • Breznak J A. Biochemical aspects of symbiosis between termites and their intestinal microbiota. // Anderson J M, Rayner A D M and Walton D W H. Invertebrate Microbial Interactions. Cambridge: Cambridge University Press. 1984: 173–203.

    Google Scholar 

  • Breznak J A, Switzer J M. Acetate synthesis from H2 plus CO2 by termites gut microbes. Appl. Environ. Microbiol., 1986, 52: 623–630.

    PubMed  CAS  Google Scholar 

  • Breznak J A, Brune A. Role of microorganism in the digestion of lignocellulose by termites. Annu. Rev. Entomol., 1994, 39: 453–487.

    CAS  Google Scholar 

  • Breznak J A, Pankratz H S. In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl. Enviorn. Microbiol., 1977, 33: 406–426.

    CAS  Google Scholar 

  • Brigham J W, Adney L, Himmel M. Hemicelluloses: diversity and applications. // Charles E. Wyman. Handbook on bioethanol: production and utilization (Applied Energy Technology Series). Washington DC: Taylor and Francis, 1996: 119–142.

    Google Scholar 

  • Brune A. Woodworker’s digest. Science, 2007, 450: 487–488.

    CAS  Google Scholar 

  • Brune A. Symbionts aiding digestion. Pp. 1102–11-7. In V. H. Resh and R. T. Carde [Eds.], Encyclopedia of Insects. New York: Academic Press, 2003.

    Google Scholar 

  • Brune A. Termite guts: the world’s smallest bioreactors. Trends Biotechnol., 1998, 16: 16–21.

    CAS  Google Scholar 

  • Brune A, Stingl U. Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. // Overmann J. Molecular Basis of Symbiosis. Berlin, Springer, 2005: 39–60.

    Google Scholar 

  • Brune A, Friedrich M. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbial., 2000, 3: 263–269.

    CAS  Google Scholar 

  • Brune A, Kühl M. pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J. Insect Physiol., 1996, 42: 1121–1127.

    CAS  Google Scholar 

  • Brune A, Emerson D, Breznak J A. The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol., 1995, 61: 2681–2687.

    PubMed  CAS  Google Scholar 

  • Cantarel B L, Coutinho P M, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res., 2009, 37(suppl_1): D233–D238.

    PubMed  CAS  Google Scholar 

  • Cao Y Q, Sun J Z, Rodriguez J M, Lee K C. Hydrogen Emission by Three Wood-feeding Subterranean Termite Species (Isoptera: Rhinotermitidae): Production and Characteristics. Insect Sci., 2010, 17: 237–244.

    CAS  Google Scholar 

  • Carey J, Adam A. Put a termite in your tank, biobreakthroughs are promising much better ways to make ethanol. Business Week, 2006, (December 18): 132–133.

    Google Scholar 

  • Carlton J M, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 2007, 315: 207–212.

    PubMed  Google Scholar 

  • Cazemier A E, Verdoes J C, Rubsaet F A G, et al. Promicromonospora pachnodae sp. nov., a member of the (hemi) cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek, 2003, 83: 135–148.

    PubMed  CAS  Google Scholar 

  • Cazemier A E, Hackstein J H P, Op den Camp H VJ M, et al. Bacteria in the intestinal tract of different species of arthropods. Microbiol. Ecol., 1997, 33: 189–197.

    Google Scholar 

  • Chaffron S, von Mering C. Termites in the woodwork. Genome Biol., 2007, 8: 229.1–229.4.

    Google Scholar 

  • Chung SY, Maeda M, Song E, et al. A gram-positive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis strain TA421, isolated from a termite ecosystem. Biosci. Biotechnol. Biochem., 1994, 58: 2111–2113.

    CAS  Google Scholar 

  • Cleveland L R, Hall S R, Sanders E P, et al. The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem. Am. Acad. Arts Sci., 1934, 17: 185–342.

    Google Scholar 

  • Cleveland L R. The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes Kollar. Biol. Bull., 1924, 46: 178–227.

    Google Scholar 

  • Cleveland L R. Symbiosis between termites and their intestinal protozoa. Proc. Natl. Acad. Sci. USA, 1923, 9: 424–428.

    PubMed  CAS  Google Scholar 

  • Cook D M, Henriksen E D, Upchurch R, et al. Isolation of polymer-degrading bacteria and characterization of the hindgut bacterial community from the detritus-feeding larvae of Tipula abdominalis (Diptera: Tipulidae). Appl. Environ. Microbiol., 2007, 73: 5683–5686.

    PubMed  CAS  Google Scholar 

  • Cowling E B, Merrill W. Nitrogen in wood and its role in wood deterioration. Can. J. Botany, 1966, 44: 1539–1554.

    CAS  Google Scholar 

  • Cullen D, Kersten P J. Enzymology and molecular biology of lignin degradation. // Brambl R and Marzulf G A. The mycota III biochemistry and molecular biology. Berlin: Springer, 2004: 249–273.

    Google Scholar 

  • Cruden D L, Markovetz A J. Carboxymethylcellulose decomposition by intestinal bacteria of cockroaches. Appl. Environ. Microbiol., 1979, 38: 369–372.

    PubMed  CAS  Google Scholar 

  • Czolij R, Slaytor M, O’Brien RW. Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitermitidae). Appl. Enviorn. Microbiol., 1985, 49: 1226–1236.

    Google Scholar 

  • Darlington J P E C, Zimmerman P R, Greenberg J, et al. Production of metabolic gases by nests of the termite Macrotermes jeanneli in Kenya. J. Trop. Ecol., 1997, 13: 491–510.

    Google Scholar 

  • Deevong P, Hattori S, Yamada A, et al. Isolation and detection of methanogens from the gut of higher termites. Microbes Environ., 2004, 19: 221–226.

    Google Scholar 

  • Demain A. Biosolution to the energy problem. J. Ind. Microbiol. Biotechnology, 2009, 36: 319–332.

    CAS  Google Scholar 

  • Ding S Y, Himmel M E. The maize primary cell wall microfibril: A new model derived from direct visualization. J. agric. Food Chem., 2006, 54: 597–606.

    PubMed  CAS  Google Scholar 

  • Douglas A E. The microbial dimension in insect nutritional ecology. Funct. Ecol., 2009, 23: 38–47.

    Google Scholar 

  • Ebert A, Brune A. Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl. Environ. Microbiol., 1997, 63: 4039–4046.

    PubMed  CAS  Google Scholar 

  • Feyereisen R. Insect cytochrome P450. // Gilbert L I, Iatrou K and Gill S S. Comprehensive Molecular Insect Science [Vol. 4]: Biochemistry and Molecular Biology. Amsterdam: Elsevier, 2005: 1–77.

    Google Scholar 

  • Emily S. 2007. Why termite guts could bring better biofuels? Technol. Rev., Website publication (Jan. 17, 2007) at http://www.technologyreview. com/Biotech/18073/

    Google Scholar 

  • Fisher M D M, Brewste C. Diversity of gut bacteria of Reticulitermes flavipes as examined by 16S rRNA gens sequencing and amplified rDNA restriction analysis. Curr. Microbiol., 2007, 55: 254–259.

    PubMed  CAS  Google Scholar 

  • Gaut I P C. Identity of the fungal symbiont of Sirex noctilio. Aust. J. Biol. Sci., 1969, 22: 905–914.

    Google Scholar 

  • Geib S M, Filley T R, Hatcher P G, et al. Lignin degradation in wood-feeding insects. Proc. Natl. Acad. Sci. USA, 2008, 105:12932–12937.

    PubMed  CAS  Google Scholar 

  • Gidh A, Talreja D, Vinzant T B, et al. Detailed analysis of modification in lignin after treatment with cultures screened for lignin depolymerizing agents. Appl. Biochem. And Biotechnol., 2006, 129–132: 829–132.

    Google Scholar 

  • Glazer A N, Nikaido H. Microbial biotechnology, fundamentals of applied microbiology. 2nd Ed. New York: Cambridge University Press, 2007.

    Google Scholar 

  • Gomez L D, Steele-King C G, McQueen-Mason S J. Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytologist, 2008, 178: 473–485.

    PubMed  CAS  Google Scholar 

  • Griffiths B S, Cheshire M V. Digestion and excretion of nitrogen and carbohydrate by the cranefly larva Tipula paludosa (Diptera: Tipulidae). Insect Biochem., 1987, 17: 277–282.

    CAS  Google Scholar 

  • Hacksterin J H P, Stumm C K. Methane production in terrestrial arthropods. Proc. Natl. Acad. Sci. USA, 1994, 91: 5441–5445.

    Google Scholar 

  • Hallenbeck P C, Benemann J. Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy, 2002, 27: 1185–1193.

    CAS  Google Scholar 

  • Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev., 2004, 68: 669–685.

    PubMed  CAS  Google Scholar 

  • Hara K, Shinzato N, Oshima T, et al. Endosymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulitermes speratus detected by fluorescent in situ hybridization. Microbes. Environ., 2004, 19: 120–127.

    Google Scholar 

  • Harazono K, Yamashita N, Shinzato N, et al. Isolation and characterization of aromaticsdegrading microorganisms from the gut of the lower termite Coptotermes formosanus. Biosci. Biotechnol. Biochem., 2003, 67: 889–892.

    PubMed  CAS  Google Scholar 

  • Higuchi T. Lignin biochemistry: Biosynthesis and biodegradation. Wood Sci. Technol., 1990, 24: 23–63.

    CAS  Google Scholar 

  • Hinze B, Crailsheim K, Leuthold R H. Polyethism in food processing and social organisation in the nest of Macrotermes bellicosus (Isoptera, Termitidae). Insectes Soc., 2002, 49: 31–37.

    Google Scholar 

  • Hoffmann P. Tomorrow’s energy, hydrogen, fuel cells, and the prospects for a cleaner planet. Cambridge: The MIT Press, 2001.

    Google Scholar 

  • Hopkins D W, Chudek J A, Bignell D E, et al. Application of 13C NMR to investigate the transformations and biodegradation of organic materials by some soil and litter-dwelling insects. Biodegradation, 1998, 9: 423–431.

    PubMed  CAS  Google Scholar 

  • Howard R L, Abotsi E, Jansen Van Rensburg E L, et al. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol., 2003, 2: 602–619.

    CAS  Google Scholar 

  • Husseneder C, Wise B R, Higashiguchi D T. Microbial diversity in the termite gut: A complementary approach combining culture and culture-independent techniques. // Chow-Yong Lee and William H. Robinson. Proceedings of the 5th International Conference on Urban Pests. Malaysia: P&Y Design Network Penang, 2005: 189–195.

    Google Scholar 

  • Hyodo F, Tayasu I, Inoue T, et al. Differential role of symbiotic in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct. Ecol., 2003, 17(2): 186–193.

    Google Scholar 

  • Hyodo F, Inoue T, Azuma J I, et al. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera: Macrotermitinae). Soil Biol. Biochem., 2000, 32: 653–658.

    CAS  Google Scholar 

  • Inoue J I, Saita K, Kudo T, et al. Hydrogen production by termite gut protists: characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus. Eukar. Cell, 2007, 6: 1925–1932.

    CAS  Google Scholar 

  • Inoue T, Moriya S, Ohkuma M, et al. Molecular cloning and characterization of a cellulose gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene, 2005, 349: 67–75.

    PubMed  CAS  Google Scholar 

  • Itakura S, Tanaka H, Enoki A. Distribution of cellulase, glucose and related substances in the body of Coptotermes formosanus. Material und Organimen, 1997, 31: 17–29.

    CAS  Google Scholar 

  • Itakura S, Ueshima K, Tanaka H, et al. Degradation of wood components by subterranean termite, Coptotermes formosanus Shiraki. Mokuzai gakkaishi, 1995, 41: 580–586.

    CAS  Google Scholar 

  • Jorgensen H, Kristensen J B, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod. Bioref., 2007, 1: 119–134.

    Google Scholar 

  • Katsumata K S, Jin Z, Hori K, et al. Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. J. Wood Sci., 2007, 53: 419–426.

    CAS  Google Scholar 

  • Kawaguchi S, Yoshimura T, Aoyagi H, et al. Energy gas production from wood biomass by termites. // Proceedings of XV International Conference Union for the study of Social Insect (IUSSI), Washington DC. 2006: 205–206.

    Google Scholar 

  • Kendrick B. Fungal symbioses and evolutionary innovations. // Margulis L and Fester R. Symbiosis as source of evolutionary Innovation. Cambridge: MIT Press, 1991: 249–261.

    Google Scholar 

  • Keya S O, Mureria N K, Arshad M A. Population dynamics of soil microorganisms in relation to proximity of termite mounds in Kenya. J. arid. Envion., 1982, 5: 353–359.

    Google Scholar 

  • Kirk T K. Enzymatic “combustion”: the microbial degradation of lignin. Ann. Rev. Microbiol., 1987, 41: 465–501.

    CAS  Google Scholar 

  • Kiuchi I, Moriya S, Kudo T. Two different size-distributions of engulfment-related vesicles among symbiotic protists of the lower termite, Reticulitermes speratus. Microbes. Environ., 2004, 19: 211–214.

    Google Scholar 

  • König H, Frohlich J, Hertel H. Diversity and lignocellulolytic activities of cultured microorganisms. // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 271–301.

    Google Scholar 

  • Kosono S, Maeda M, Fuji F, et al. Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl. Environ. Microbiol., 1997, 63: 3282–3285.

    PubMed  CAS  Google Scholar 

  • Kqczkowski J. Structure, function and metabolism of plant cell wall. Acta Phsiol. Plantarium., 2003, 25: 287–305.

    Google Scholar 

  • Krishna K. Taxonomy, physiology, and distribution of termites. // Krishna K and Weesner F M. Biology of termites, Vol 1, New York: Academic Press, 1970: 127–152.

    Google Scholar 

  • Kuhnigk T, könig H. Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. J. Basic Microbiol., 1997, 37: 205–211.

    PubMed  CAS  Google Scholar 

  • Kuhnigk T, Borst E M, Ritter A. Degradation of lignin monomers by the hindgut flora of xylophagous termites. Syst. Appl. Microbiol., 1994, 17: 76–85.

    CAS  Google Scholar 

  • Kukor J J, Cowan D P, Martin M M. The role of ingested fungal enzymes in cellulose digestion in larvae of cerambycid beetles. Physiol. Zool., 1988, 61: 364–371.

    CAS  Google Scholar 

  • Kukor J J, Martin M M. Cellulose digestion in Monochamus marmorator Kby. (Coleoptera: Cerambycidae): the role of acquired fungal enzymes. J. Chem. Ecol., 1986, 12: 1057–1070.

    CAS  Google Scholar 

  • Kukor J J, Martin M M. Acquisition of digestive enzymes by siricid woodwasps from their fungal symbiont. Science, 1983, 220: 1161–1163.

    PubMed  CAS  Google Scholar 

  • Kumar P, Barrett D M, Delwiche M J, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 2009, 48: 3713–3729.

    CAS  Google Scholar 

  • Kumari R, Sachdev M, Prasad R, Garg A P, et al. Microbiology of termite hill (mound) and soil. // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 351–372.

    Google Scholar 

  • Kyou K, Watanabe T, Yoshimura T, Takahashi M. Lignin modification by termite and its symbiotic protozoa. Wood Research, 1996, 83: 50–54.

    CAS  Google Scholar 

  • Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623–1627.

    PubMed  CAS  Google Scholar 

  • Lange J P. Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels. Bioprod. Bioref., 2007, 1: 39–48.

    CAS  Google Scholar 

  • Leadbetter J R, Schmidt T M, Graber J R, et al. Acetogenesis from H2 plus CO2 by spriochetes from termite guts. Science, 1999, 283: 686–689.

    PubMed  CAS  Google Scholar 

  • Lewis N G, Sarkanen S. Lignin and lignin biosynthesis. In ACS symposium series 697. ACS, Washington DC, 1998: 436.

    Google Scholar 

  • Lewis N G, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1990, 41: 455–496.

    PubMed  CAS  Google Scholar 

  • Li L, Fröhlich J, König H. Cellulose digestion in the termite gut. // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 221–241.

    Google Scholar 

  • Lo N, Tokuda G, Watanabe H, et al. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol., 2000, 10: 801–804.

    PubMed  CAS  Google Scholar 

  • Lo N, Watanabe H, Sugimura M. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc. Biol. Sci., 2003, 270(suppl 1): S69–S72.

    PubMed  CAS  Google Scholar 

  • Lynd L R, Weimer P J, van. Zyl WH, Pretorius I S. Microbial cellulose utilization: fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev., 2002, 66: 507–577.

    Google Scholar 

  • Maeda M, Chung S Y, Song E, Kudo T. Multiple genes encoding 2, 3-dihydroxybiphenyl 1,2-dioxygenase in the Grampositive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Appl. Environ. Microbiol., 1995, 61: 549–555.

    PubMed  CAS  Google Scholar 

  • Malherbe S, Cloete T E. Lignocellulose biodegradation: fundamentals and applications: a review. Environ. Sci. Biotechnol., 2003, 1:105–114.

    Google Scholar 

  • Martin M M. The Evolution of Insect-Fungus Associations: From Contact to Stable Symbiosis. Amer. Zool., 1992, 32: 593–605.

    Google Scholar 

  • Martin M M. The evolution of cellulose digestion in insects. Phil. Trans. R. Soc. Lond. B, 1991, 333: 281–288.

    Google Scholar 

  • Martin M M. Invertebrate-microbial interactions: Ingested fungal enzymes in arthropod biology. Ithaca and London: Cornell University Press, 1987.

    Google Scholar 

  • Martin M M. Cellulose digestion in insects. Comp. Biochem. Physiol., 1983, 75A: 313–324.

    CAS  Google Scholar 

  • Martin M M, Martin J S. Cellulose digestion in the mid-gut of the fungus-growing termite Macrotermes natalensis: the role of the acquired digestive enzymes. Science, 1977, 199: 1453–1455.

    Google Scholar 

  • Matsui T, Tokuda G, Shinzato N. Termites as functional gene resources. Rec. Pate. Biotechnol., 2009, 3: 10–18.

    CAS  Google Scholar 

  • Matsumura F. Toxicology of Insecticides. New York: Plenum Press, 1986.

    Google Scholar 

  • Mcmillan J. Bioethanol production: status and prospects. Renew. Energy, 1997, 10: 295–302.

    CAS  Google Scholar 

  • Merino S, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Engin./Biotechnol., 2007, 108: 95–120.

    CAS  Google Scholar 

  • Minic Z. Physiological roles of plant glycoside hydrolases. Planta, 2008, 227: 723–740.

    PubMed  CAS  Google Scholar 

  • Nakashima K, Watanabe H, Saitoh H, et al. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanusShiraki. Insect Biochem. Mol. Bio., 2002a, 32: 777–784.

    CAS  Google Scholar 

  • Nakashima K, Watanabe H, Azuma J I. Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. CMLS, Cell. Mol. Life Sci., 2002b, 59: 1554–1560.

    CAS  Google Scholar 

  • Nakashima K, Azuma J I. Distribution and properties of endo-β-1, 4-glucanase from a lower termite, Coptotermes formosanus (Shiraki). Biosci. Biochem., 2000, 64: 1500–1506.

    CAS  Google Scholar 

  • Nelson K. Metagenomics as a tool to study biodiversity. // Zengler K. Accessing uncultivated microorganisms. Herndon: ASM Press, 2008: 153–169.

    Google Scholar 

  • Ni J, Takehara M, Miyazawa M, et al. Random exchanges of non-consered amino acid residues among four parental termite cellulases by family shuffling improved thermostability. Protein Engineer. Design Select., 2007a, 20: 535–542.

    CAS  Google Scholar 

  • Ni J, Taokuda G, Takehara M, et al. Heterologous expression and enzymatic characterization of β-glucosidase from the drywood-eating termite, Neotermes koshunensis. Appl. Entomol. Zool., 2007b, 42: 457–463.

    CAS  Google Scholar 

  • Ni J, Takehara M, Watanabe H. Heterologous overexpression of a mutant termite cellulase gene in Escherochia coli by DNA shuffling of four orthologous parental cDNAs. Biosci. Biotechnol. Biochem., 2005, 69: 1711–1720.

    PubMed  CAS  Google Scholar 

  • Noda S, Iida T, Kitade O, et al. Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite, Coptotermes formosanus. Appl. Enviorn. Microbiol., 2005, 71: 8811–8817.

    CAS  Google Scholar 

  • Noirot C, Noirot-Timothée C. The digestive system. // Krishna K and Weesner F M. Biology of termites. Vol. I, New York: Academic Press, 1969: 49–88.

    Google Scholar 

  • O’Brien G W, Veivers P C, McEwen S E, et al. The origin and distribution of cellulase in the termites, Nasutitermes exitisus and Coptotermes lacteus. Insect Biochem., 1979, 9: 619–625.

    CAS  Google Scholar 

  • Odelson D A, Breznak J A. Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoa from termites. Appl. Environ. Microbiol., 1985, 49: 614–621.

    PubMed  CAS  Google Scholar 

  • Ohkuma M. Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends in Microbiol., 2008, 16: 345–352.

    CAS  Google Scholar 

  • Ohkuma M. Termite symbiotic systems: efficient bio-recycling of cellulose. Appl. Microbiol. Biotechnol., 2003, 61: 1–9.

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Maeda Y, Johjima T, et al. Lignin degradation and roles of white rot fungi: study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation. Riken Rev., 2001, 42: 39–42.

    CAS  Google Scholar 

  • Ohkuma M, Noda S, Kudo T. Phylogeny of symbiotic methanogens in diverse termites. FEMS Microbiol. Lett., 1999, 171: 147–153.

    PubMed  CAS  Google Scholar 

  • Otero J M, Panagiotou G, Olsson L. Fueling industrial biotechnology growth with bioethanol. Adv. Biochem. Engin./Biotechnol., 2007, 108: 1–40.

    CAS  Google Scholar 

  • Pan C, Zhou Y, Deng T, Mo J. Activities of ligninases in Odontotermes formosanus (Isoptera: Termitidae) and its symbiotic fungus. Sociobiology, 2009, 53: 177–187.

    Google Scholar 

  • Pasti M, Belli M L. Cellulolytic activity of Actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol. Lett., 1985, 26: 107–112.

    CAS  Google Scholar 

  • Paul J, Varma A K. Hydrolytic enzymes production in Micrococcus roseus growing on different cellulosic substrate. Lett. Apl. Microbiol., 1993, 16: 167–169.

    CAS  Google Scholar 

  • Paul J, Varma A K. Characterization of cellulose and hemicellulose degrading Bacillus sp. from termite infested soil. Curr. Sci., 1992, 64: 262–266.

    Google Scholar 

  • Paul J, Varma A K. Influence of sugars on endoglucanase and β-xylanase of a Bacillus strain. Biotechnol. Lett., 1990, 12: 61–64.

    CAS  Google Scholar 

  • Paul J, Sarkar A, Varma A. In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut. Curr. Sci., 1986, 55: 710–714.

    CAS  Google Scholar 

  • Paul J, Sarkar A, Varma A. Cellulose digesting bacteria from live termites mound soils. Curr. Sci., 1985, 54: 1098–1101.

    Google Scholar 

  • Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J., 2008, 54: 559–568

    PubMed  CAS  Google Scholar 

  • Pester M, Brune A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J., 2007, 1:551–565.

    PubMed  CAS  Google Scholar 

  • Pester M. Hydrogen metabolism in the hindgut of lower termites. Ph.D. dissertation. Marburg: Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 2006.

    Google Scholar 

  • Poinar G O Jr. Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasites and Vectors, 2009, 2(12) Doi: 10.1186/1756-3305-2-12

    Google Scholar 

  • Prillinger H, Messner R, Konig H, et al. Yeast associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco-and basidiomycetes. System. Appl. Microbiol., 1996, 19: 265–283.

    CAS  Google Scholar 

  • Prins R A, Kreulen D A. Comparative aspects of plant cell wall digestion in insects. Anim. Feed Sci. Technol., 1991, 32: 101–118.

    Google Scholar 

  • Rabinovich M L, Melnik M S, Bolobova A V. Microbial cellulases: a review. Appl. Biochem. Microbiol., 2002, 38: 305–321.

    CAS  Google Scholar 

  • Radek R. Flagellates, Bacteria, and fungi associated with termites: diversity and function in nutrition-review. Ecotropica, 1999, 5: 183–196.

    Google Scholar 

  • Radek R, Hausmann K, Breuning A. Ectobiotic and endobiotic bacteria associated with the termite flagellate Joenia annectens. Acta. Protozoologia, 1992, 31: 93–107.

    Google Scholar 

  • Ragauskas A, Nagy M, Kim D H, et al. From wood to fuelsIntegrating biofuels and pulp production. Ind. Biotechnol., 2006a, 2: 55–66.

    CAS  Google Scholar 

  • Ragauskas A, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials. Science, 2006b, 311: 484–489.

    PubMed  CAS  Google Scholar 

  • Reid I D. Solid-state fermentation for biological delignification. Enzym. Microbiol. Technol., 1989, 11: 786–803.

    CAS  Google Scholar 

  • Richmond P A. Occurrence and functions of native cellulose. // Haigler C H and Weimer P J. Biosynthesis and biodegradation of cellulose. New York: Marcel Dekker Inc., 1991: 5–23.

    Google Scholar 

  • Rouland M M. Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomycetes sp. Comp. Biochem. Physiol., 1995, 112B: 629–288.

    Google Scholar 

  • Rouland-Lefèvre C, Inoue T, Johjima T. Termittomyces/Termite interactions. // Konig H and Varma A. Intestinal Microorganisms of termites and other invertebrates, Berlin: Springer, 2006: 335–350.

    Google Scholar 

  • Rouland-Lefèvre C. Symbiosis with fungi. // Abe T, Bignell D and Higashi M. Termites: evolution, sociality, symbiosis, ecology. London: Kluwer Academic Publishers, 2000: 289–306.

    Google Scholar 

  • Rouland C, Civas A, Renoux J, et al. Synergistic activity of the enzymes involved in cellulose degradation, purified from Macrotermes mulleri (Termitidae: Macrotermitinae) and its symbiotic fungus Termitomycetes sp. Comp. Biochem. Physiol., 1988, 91B: 459–465.

    CAS  Google Scholar 

  • Saha B C. Hemicellulose conversion. J. Indust. Microbiol. Biotechnol., 2003, 30: 279–291.

    CAS  Google Scholar 

  • Sarkar A. Isolation and characterization of thermophilic, alkaliphilic, cellulose-degrading Bacillus thermoalcaliphilus sp. nov. from termite (Odontotermes obesus) mound soil of a semiarid area. Geomicrobiol. J., 1991, 9: 225–232.

    CAS  Google Scholar 

  • Scharf M E, Tartar A. Termite Digestomes as sources for novel lignocelluloses. Biofuels Bioprod. Bioref., 2008, 2: 540–552.

    CAS  Google Scholar 

  • Scharf M E, Wu-Scharf D, Zhou X, et al. Gene expression profiles among immature and adult reproductive castes of the Reticulitermes flavipes. Insect Mol. Biol., 2005, 14: 31–34.

    PubMed  CAS  Google Scholar 

  • Schäfer A, Konrad R, Kämpfer P, et al. Hemicellulose-degrading bacteria and yeasts from the termite gut. J. Appl. Bacteriol., 1996, 80: 471–478.

    PubMed  Google Scholar 

  • Schmitt-Wagner D, Brune A. Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl. Environ. Microbiol., 1999, 65: 4490–4496.

    PubMed  CAS  Google Scholar 

  • Schubert C. Can biofuels finally take center stage? Nat. Biotecnol., 2006, 24: 777–784.

    CAS  Google Scholar 

  • Shallom D, Shoham Y. Microbial hemicellulases. Curr. Opin. Microbiol., 2003, 6: 219–228.

    PubMed  CAS  Google Scholar 

  • Sinsabaugh R L, Linkins A E, Benfield E F. Cellulose digestion and assimilation by three leaf shredding aquatic insects. Ecology, 1985, 66: 1464–1471.

    CAS  Google Scholar 

  • Slaytor M. Energy metabolism in the termite and its gut microbiota. // Konig H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 307–332.

    Google Scholar 

  • Slaytor M, Veivers P C, Lo N. Aerobic and anaerobic metabolism in the higher termite Nasutitermes walker (Hill). Insect Biochem. Mol. Biol., 1997, 27: 291–303.

    CAS  Google Scholar 

  • Spradbery J P. The oviposition biology of siricid woodwasps in Europe. Ecol. Entomol., 1977, 2: 225–230.

    Google Scholar 

  • Stillwell M A. Woodwasps (Siricidae) in conifer and the associated fungus stereum chailletii in eastern Canada. For. Sci., 1966, 12: 121–128.

    Google Scholar 

  • Stillwell M A. The fungus associated with woodwasp occurring in beech in New Brunswick. Can. J. Bot., 1964, 42: 495–496.

    Google Scholar 

  • Su N Y, Scheffrahn R H. Termites as pests of buildings, // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates, Berlin: Springer, 2000: 437–453.

    Google Scholar 

  • Su N Y, Scheffrahn R H. A review of subterranean termite control practices and prospects for integrated management programs. Integr. Pest Management Rev., 1998, 3: 1–13.

    Google Scholar 

  • Sugimoto A, Bignell D E, MacDonald J A. Global impact of termites on the carbon cycle and atmospheric trace gasses. // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2000: 409–435.

    Google Scholar 

  • Sugimoto A, Inoue T, Tayasu I, et al. Methane and hydrogen production in a termite-symbiont system. Ecol. Res., 1998, 13: 241–257.

    CAS  Google Scholar 

  • Suh S O, Nguyen N H, Blackwell M. Nine new Candida species near C. membranifaciens isolated from insects. Mycol. Res., 2005, 109: 1045–1056.

    PubMed  CAS  Google Scholar 

  • Suh S O, White MM, Nguyen N H, et al. The status and characterization of Enteroramus dimorphus: a xylosefermenting yeast attached to the gut of beetles. Mycologia, 2004, 96: 756–760.

    PubMed  CAS  Google Scholar 

  • Sun J Z, Scharf M E. Insects and Biofuels. Insect Science, 2010, 17: 163–312. (Special Issue)

    Google Scholar 

  • Sun J Z. Could wood-feeding termites provide better biofuels? // Susan Jones. Proceedings of National Conference on Urban Entomology (NCUE). Tulsa: Urban Pest Roundup, 2008: 50–54.

    Google Scholar 

  • Sun J Z, Lockwood M E, Etheridge J L, et al. Distribution of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae) in Mississippi. J. Econ. Entomol., 2007, 100: 1400–1408.

    PubMed  Google Scholar 

  • Taguchi F, Chang J D, Mizukami N, et al. Isolation of a hydrogen-producing bacterium, clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol., 1993, 39: 726–730.

    CAS  Google Scholar 

  • Taguchi F, Chang J D, Mizukami N, et al. Efficient hydrogen production from starch by a bacterium isolated from termites. J. Ferment. Bioengin., 1992, 73: 244–245.

    CAS  Google Scholar 

  • Tanaka H, Aoyagi H, Shina S. Influence of the diet compounds on the symbiotic microorganism community in hindgut of Coptotermes formosanus Shiraki. Appl. Microbiol. Biotechnol., 2006, 71: 907–917.

    PubMed  CAS  Google Scholar 

  • Todaka N, Moriya S, Saita K, et al. Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol. Ecol., 2007, 59: 592–599.

    PubMed  CAS  Google Scholar 

  • Tokuda G, Watanabe H. Hidden cellulases in termites: revision of an old hypothesis. Biol. Lett., 2007, 3: 336–339.

    PubMed  CAS  Google Scholar 

  • Tokuda G, Yamaoka I, Noda H. Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl. Enviro. Microbiol., 2000, 66: 2199–2207.

    CAS  Google Scholar 

  • Tokuda G, Lo N, Watanabe H, et al. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim. Biophys. Acta., 1999, 1447: 146–159.

    PubMed  CAS  Google Scholar 

  • Treves D S, Martin M M. Cellulose digestion in primitive hexapods: effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat, Thermobia domestica (Zygentoma, Lepismatidae). J. Chem. Ecol., 1994, 20: 2003–2020.

    CAS  Google Scholar 

  • Tsunoda K, Ohmura W, Yoshimura T, et al. Methane emission by the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) I. Effect of termite caste, population size and volume of test containers. Wood Res., 1993, 79: 34–40.

    CAS  Google Scholar 

  • U.S. Department of Energy (DOE). 2006. Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095, U.S. Department of Energy Office of Science and Office of Energy Efficicy and Renewable Energy (www.doegenomestolife.org/biofuels/).

    Google Scholar 

  • Varma A, Kolli B K, Paul J, et al. Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiol. Rev., 1994, 15: 9–28.

    CAS  Google Scholar 

  • Veivers P C, O’Brien R W, Slaytor M. Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria. J. Insect Physiol., 1982, 28: 947–951.

    Google Scholar 

  • Waller D A, La Fage J P. Nutritional ecology of termites. // Slansky E. and Rodriguez J G. The nutritional ecology of insects, mites, and spiders and related invertebrates. New York: Wiley, 1987: 487–532.

    Google Scholar 

  • Ward O P, Moo-Young M. Enzymatic degradation of cell wall and related plant polysaccharides. CRC Crit. Rew. Biotechnol., 1989, 8: 237–274.

    CAS  Google Scholar 

  • Warneche F, Luginbuhl P, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Science, 2007, 450: 560–565.

    Google Scholar 

  • Watanabe Y, Shinzato N, Fukatsu T. Isolation of actinomycetes from termites’ gut. Biosci. Biotechnol. Biochem., 2003, 67: 1797–1801.

    PubMed  CAS  Google Scholar 

  • Watanabe H, Tokuda G. Animal cellulases. Cell. Mol. Life Sci., 2001, 58: 1167–1178.

    PubMed  CAS  Google Scholar 

  • Watanabe H, Noda H, Tokoda G, et al. A cellulase gene of termite origin. Nature, 1998, 394: 330–331.

    PubMed  CAS  Google Scholar 

  • Weil J, Westgate P, Kohlmann K, et al. Cellulase pretreatments of lignocellulosic substrates. Enzyme Microb. Technol., 1994, 16: 1002–1004.

    PubMed  CAS  Google Scholar 

  • Wen K Y. The isolation and characterization of Clostridum xylanolyticum Ter3, an isolate with cellulose-saccharifing and hydrogen-producing activities from termite hindgut. Master thesis, Taiwan: National Chung Hsing University, 2007.

    Google Scholar 

  • Wenzel M, Schönig I, Berchtold M, et al. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J. Appl. Microbiol., 2002, 92: 32–40.

    PubMed  CAS  Google Scholar 

  • Wiedemann J F. Die Zelluloseverdauung bei Lamellicornierlarven. Z f Morphol u Ökol d Tiere, 1930, 19: 228–258.

    Google Scholar 

  • Wiselogel A, Tyson S, Johnson D. Biomass feedstock resources and composition. // Charles E Wyman. Handbook on bioethanol: production and utilization (Applied Energy Technology Series). Washington DC: Taylor and Francis, 1996: 105–118.

    Google Scholar 

  • Wood T G, Thomas R J. The mutualistic association between Macrotermitinae and Termitomyces. // Wilding N and Collins N M and Hammond P M. Insect-fungus Interactions. New York: Academic Press, 1989: 69–92.

    Google Scholar 

  • Worldwatch Institute. Biofuels for Transport: Global Potential and Implications for Sustainable Agriculture and Energy in the 21st Century. London: Earthscan Publications Ltd., 2007

    Google Scholar 

  • Yamin MA. Cellulose metabolism by the flagellate Trichonympha from the termite is independent of endosymbiotic bacteria. Science, 1981, 211: 58–59.

    PubMed  CAS  Google Scholar 

  • Yamin M A. Cellulose metabolism by termite flagellate Trichomitopsis termopsides. Appl. Enviorn. Microbiol., 1980, 39: 859–863.

    CAS  Google Scholar 

  • Yamin M A. Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grasse and Hypermastigida Grassi & Foa reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiology, 1979, 4: 3–119.

    Google Scholar 

  • Yamin M A. Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite Zootermopsis. J. Protozool., 1978, 25: 535–538.

    Google Scholar 

  • Yang B, Wyman C. Pretreatment: the key to unlocking lowcost cellulosic ethanol. Biofuels Bioprod. Bioref., 2008, 2: 26–40.

    CAS  Google Scholar 

  • Yara K, Jahana K, Hayashi H. In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae, Macrotermitinae). Sociobiology, 1989, 15: 247–260.

    Google Scholar 

  • Yarlett N, Hackstein J H P. Hydrogenosomes: one organelle, multiple origins. Bioscience, 2005, 55: 657–668.

    Google Scholar 

  • Yoshimura T. Contribution of the protozoa fauna to nutritional physiology of the lower termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Res., 1995, 82: 68–129.

    Google Scholar 

  • Yoshimura T. Distribution of the symbiotic protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Jpn. J. Environ. Entomol. Zool., 1992, 4: 115–120.

    Google Scholar 

  • Yuki M, Moriya S, Inoue T, et al. Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zoolog. Sci., 2008, 25: 401–406.

    PubMed  CAS  Google Scholar 

  • Zhang Y H P, Himmel M E, Mielenz J R. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv., 2006, 24: 452–481.

    CAS  Google Scholar 

  • Zhou X, Smith J A, Oi F M, et al. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite R. flavipes. Gene, 2007, 395: 29–39.

    PubMed  CAS  Google Scholar 

  • Collins N M, Wood TG. Termites and atmospheric gas production. Science, 1984, 224(4644): 84–85.

    PubMed  CAS  Google Scholar 

  • Zimmerman P R, Greenberg J P, Wandiga S O, Crutzen P J. Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science, 1982, 218: 563–565.

    PubMed  CAS  Google Scholar 

  • Zoberi M H, Grace J K. Fungi associated with the subterranean termite Reticulitermes flavipes in Ontario. Mycologia, 1990, 82: 289–294.

    Google Scholar 

  • Zoberi M H. The ecology of some fungi in a termite hill. Mycologia, 1979, 71: 537–545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, J., Zhou, X.J. (2011). Utilization of Lignocellulose-feeding Insects for Viable Biofuels: an Emerging and Promising Area of Entomological Science. In: Liu, T., Kang, L. (eds) Recent Advances in Entomological Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17815-3_25

Download citation