Skip to main content

Anti-tick Vaccine Development: Status and Perspectives

  • Chapter
Book cover Recent Advances in Entomological Research

Abstract

Ticks (Acarina: Arachnida: Arthropoda) are obligate, nonpermanent ectoparasites of terrestrial vertebrates. In arthropods, ticks are second only to mosquitoes in the number of pathogens they transmit to people, domestic pets, livestock, and wild animals. Ticks are vectors to a variety of human diseases, including Rocky Mountain spotted fever, Lyme disease, Colorado tick fever, tickborne encephalitis, babesiosis, tularemia, and tick-borne relapsing fever. In addition, other maladies due to tick bites, such as tick paralysis, tick toxicosis, and anaphylaxis, are common. Each year, worldwide public health and agricultural industry costs due to tick-transmitted diseases are estimated to be in the range of several billion U.S. dollars. To date, the control of ticks has relied heavily on chemical pesticides (acaricides). The excessive use of pesticides in tick control has resulted in environmental contamination, food safety concerns, and pesticide resistance. Consequently, use molecular technology to develope anti-tick vaccines is an essential alternative strategy in tick and tick-borne disease control. Recent studies and the status of anti-tick vaccine development are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alarcon-Chaidez F J, Sun J, Wikel S K. Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). Insect Biochem. Mol. Biol., 2007, 37(1): 48–71.

    PubMed  CAS  Google Scholar 

  • Anguita J, Hedrick MN, Fikrig E. Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiol. Rev., 2003, 27(4): 493–504.

    PubMed  CAS  Google Scholar 

  • Azhahianambi P, De La Fuente J, Suryanarayana V V. Cloning, expression and immunoprotective efficacy of rHaa86, the homologue of the Bm86 tick vaccine antigen, from Hyalomma anatolicum anatolicum. Parasite Immunol., 2009, 31: 111–122.

    PubMed  CAS  Google Scholar 

  • Baffi M A, de Souza G R, de Sousa C S, et al. Esterase enzymes involved in pyrethroid and organophosphate resistance in a brazilian population of Riphicephallus (boophilus) microplus (Acari, ixodidae). Mol. Biochem. Parasitol., 2008, 160(1): 70–73.

    PubMed  CAS  Google Scholar 

  • Barre N, Garris G, Aprelon R. Acaricides for eradication of the tick Amblyomma variegatum in the Caribbean. Rev. Elev. Med. Vet. Pays. Trop., 1993, 46(1–2): 349–354.

    PubMed  CAS  Google Scholar 

  • Barriga O O. A review on vaccination against protozoa and arthropods of veterinary importance. Vet. Parasitol., 1994, 55(1–2): 29–55.

    PubMed  CAS  Google Scholar 

  • Barriga O O. Evidence and mechanisms of immunosuppression in tick infestations. Genet. Anal., 1999, 15(3–5): 139–142.

    PubMed  CAS  Google Scholar 

  • Berge J B, Chevillon C, Raymond M, et al. Resistance of insects to insecticides: Molecular mechanisms and epidemiology. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales, 1996, 190(4): 445–454.

    PubMed  CAS  Google Scholar 

  • Bowman A S, Sauer J R. Tick salivary glands: Function, physiology and future. Parasitology, 2004, 129Suppl: S67–81.

    PubMed  Google Scholar 

  • Bowman A S, Coons L B, Needham G R, et al. Tick saliva: Recent advances and implications for vector competence. Med. Vet. Entomol., 1997, 11(3): 277–285.

    PubMed  CAS  Google Scholar 

  • Brossard M, Wikel S K. Immunology of interactions between ticks and hosts. Med. Vet. Entomol., 1997, 11(3): 270–276.

    PubMed  CAS  Google Scholar 

  • Brossard M, Wikel S K. Tick immunobiology. Parasitology, 2004, 129Suppl: S161–176.

    PubMed  CAS  Google Scholar 

  • Bubeck-Martinez S. Immune evasion of the Lyme disease spirochetes. Front. Biosci., 2005, 10: 873–878.

    PubMed  CAS  Google Scholar 

  • Burkot T R, Piesman J, Wirtz R A. Quantitation of the Borrelia burgdorferi outer surface protein A in Ixodes scapularis: fluctuations during the tick life cycle, doubling times, and loss while feeding. J. Infect. Dis., 1994, 170: 883–889.

    PubMed  CAS  Google Scholar 

  • Chmelar J, Anderson J M, Mu J, et al. Insight into the sialome of the castor bean tick, Ixodes ricinus. BMC Genomics, 2008, 9: 233.

    PubMed  Google Scholar 

  • Daix V, Schroeder H, Praet N, et al. Vanderplasschen Ixodes ticks belonging to the Ixodes ricinus complex encode a family of anticomplement proteins. Insect Mol Biol, 2007, 16(2): 155–166.

    PubMed  CAS  Google Scholar 

  • Decrem Y, Beaufays J, Blasioli V, et al. A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J., 2008, 275(7): 1485–1499.

    PubMed  CAS  Google Scholar 

  • de la Fuente J, Kocan KM. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol., 2006, 28(7): 275–283.

    PubMed  Google Scholar 

  • de la Fuente J, Kocan K M, Almazan C, et al. Targeting the tick-pathogen interface for novel control strategies. Front. Biosci., 2008, 13: 6947–6956.

    PubMed  Google Scholar 

  • de Silva A M, Tyson K R, Pal U. Molecular characterization of the tick-Borrelia interface. Front. Biosci., 2009, 14: 3051–3063.

    PubMed  Google Scholar 

  • Dennis D T, Piesman J F. Overview of Tick-borne Infections of Humans. // Goodman J L, Dennis D T and Sonenshine D E. Tick-borne Diseases of Humans. Washington D.C.: ASM Press, 2005: 3–11.

    Google Scholar 

  • Falco R C, Fish D, Piesman J. Duration of tick bites in a Lyme disease-endemic area. Am. J. Epidemiol., 1996, 143(2): 187–192.

    PubMed  CAS  Google Scholar 

  • Fikrig E, Narasimhan S. Borrelia burgdorferi-traveling incognito? Microbes Infect., 2006, 8(5): 1390–1399.

    PubMed  Google Scholar 

  • Fikrig E, Pal U, Chen M, et al. Ospb antibody prevents Borrelia burgdorferi colonization of Ixodes scapularis. Infect. Immun., 2004, 72(3): 1755–1759.

    PubMed  CAS  Google Scholar 

  • Fingerle V, Goettner G, Gern L, et al. Complementation of a Borrelia afzelii OspC mutant highlights the crucial role of OspC for dissemination of Borrelia afzelii in Ixodes ricinus. Int. J. Med. Microbiol., 2007, 297(2): 97–107.

    PubMed  CAS  Google Scholar 

  • Fisher M A, Grimm D, Henion A K, et al. Borrelia burgdorferi sigma54 is required for mammalian infection and vector transmission but not for tick colonization. Proc. Natl. Acad. Sci. USA, 2005, 102(14): 5162–5167.

    PubMed  CAS  Google Scholar 

  • Francischetti IM, My Pham V, Mans B J, et al. The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Biochem. Mol. Biol., 2005, 35(10): 1142–1161.

    PubMed  CAS  Google Scholar 

  • Francischetti IM, Sa-Nunes A, Mans B J, et al. The role of saliva in tick feeding. Front Biosci., 2009, 14: 2051–2088.

    PubMed  CAS  Google Scholar 

  • Fukumoto S, Sakaguchi T, You M, et al. Tick troponin I-like molecule is a potent inhibitor for angiogenesis. Microvasc. Res., 2006, 71(3): 218–221.

    PubMed  CAS  Google Scholar 

  • Furman D P, Loomis E C. The ticks of California (Acari: Ixodida). Bulletin of the California Insect Survey, 1984.

    Google Scholar 

  • Garcia-Garcia J C, Montero C, Redondo M, et al. Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus. Vaccine, 2000, 18(21): 2275–2287.

    PubMed  CAS  Google Scholar 

  • George J E. Present and future technologies for tick control. Ann. N. Y. Acad. Sci., 2000, 916: 583–588.

    PubMed  CAS  Google Scholar 

  • Gilmore R D Jr, Piesman J. Inhibition of Borrelia burgdorferi migration from the midgut to the salivary glands following feeding by ticks on OspC-immunized mice. Infect. Immun., 2000, 68(1): 411–414.

    PubMed  CAS  Google Scholar 

  • Grimm D, Tilly K, Byram R, et al. Outer-surface protein c of the Lyme disease spirochete: A protein induced in ticks for infection of mammals. Proc. Natl. Acad. Sci. USA, 2004, 101(9): 3142–3147.

    PubMed  CAS  Google Scholar 

  • Guerrero F D, Nene V M. Gene structure and expression of a pyrethroid-metabolizing esterase, czest9, from a pyrethroid resistant mexican population of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J. Med. Entomol., 2008, 45(4): 677–685.

    PubMed  CAS  Google Scholar 

  • Harnnoi T, Sakaguchi T, Nishikawa Y, et al. Molecular characterization and comparative study of 6 salivary gland metalloproteases from the hard tick, Haemaphysalis longicornis. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2007, 147(1): 93–101.

    PubMed  Google Scholar 

  • Hoogstraal H, Kim K C. Tick and mammal coevolution, with emphasis on Haemaphysalis. // Kim K C. Coevolution of Parasitic Arthropods and Mammals. New York: Wiley, 1985: 505–568.

    Google Scholar 

  • Horak I G, Camicas J L, Keirans J E. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida): A world list of valid tick names. Experimental and Applied Acarology, 2002, 28(1): 27–54.

    Google Scholar 

  • Hovius J W, van Dam A P, Fikrig E. Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol., 2007, 23: 434–438.

    PubMed  CAS  Google Scholar 

  • Howe T R, LaQuier F W, Barbour A G. Organization of genes encoding two outer membrane proteins of the Lyme disease agent Borrelia burgdorferi within a single transcriptional unit. Infect. Immun., 1986, 54(1): 207–212.

    PubMed  CAS  Google Scholar 

  • Imamura S, Namangala B, Tajima T, et al. Two serine protease inhibitors (serpins) that induce a bovine protective immune response against Rhipicephalus appendiculatus ticks. Vaccine, 2006, 24: 2230–2237.

    PubMed  CAS  Google Scholar 

  • Imamura S, Konnai S, Vaz Ida S, et al. Effects of anti-tick cocktail vaccine against Rhipicephalus appendiculatus. Jpn. J. Vet. Res., 2008, 56(2): 85–98.

    PubMed  Google Scholar 

  • Jaworski D C. Tick “Talk”: Protein release by tick salivary cells. Trends Parasitol., 2003, 19(10): 427–429.

    PubMed  CAS  Google Scholar 

  • Kemp D H, Pearson R D, Gough J M, et al. Vaccination against Boophilus microplus: localization of antigens on tick gut cells and their interaction with the host immune system. Exp. Appl. Acarol., 1989, 7: 43–58.

    PubMed  CAS  Google Scholar 

  • Kotsyfakis M, Sa-Nunes A, Francischetti I M, et al. Antiinflammatory and immunosuppressive activity of sialostatin l, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem., 2006, 281(36): 26298–26307.

    PubMed  CAS  Google Scholar 

  • Kotsyfakis M, Anderson J M, Andersen J F, et al. Cutting edge: Immunity against a “silent” salivary antigen of the Lyme vector Ixodes scapularis impairs its ability to feed. J. Immunol., 2008, 181(8): 5209–5212.

    PubMed  CAS  Google Scholar 

  • Kovar L. Tick saliva in anti-tick immunity and pathogen transmission. Folia. Microbiol. (Praha), 2004, 49(3): 327–336.

    CAS  Google Scholar 

  • Li AY, Davey R B, Miller R J, et al. Genetics and mechanisms of permethrin resistance in the santa luiza strain of Boophilus microplus (Acari: Ixodidae). J. Med. Entomol., 2008, 45(3): 427–438.

    PubMed  CAS  Google Scholar 

  • Liao M, Zhou J, Hatta T, et al. Molecular characterization of Rhipicephalus (Boophilus) microplus Bm86 homologue from Haemaphysalis longicornis ticks. Vet. Parasitol., 2007, 146(1–2): 148–157.

    PubMed  CAS  Google Scholar 

  • Lynen G, Di Giulio G, Ruheta M. The importance of tick-borne diseases and their control methods for dairy and indigenous livestock keepers in Tanzania. Proceedings of VI International Conference on Ticks and Tick-borne Pathoges. 2008: 4–5.

    Google Scholar 

  • Mans B J, Ribeiro J M. A novel clade of cysteinyl leukotriene scavengers in soft ticks. Insect Biochem. Mol. Biol., 2008, 38(9): 862–870.

    PubMed  CAS  Google Scholar 

  • Mans B J, Andersen J F, Francischetti I M, et al. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem. Mol. Biol., 2008, 38: 42–58.

    PubMed  CAS  Google Scholar 

  • Maritz-Olivier C, Stutzer C, Jongejan F, et al. Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol., 2007, 23: 397–407.

    PubMed  CAS  Google Scholar 

  • Matthysse J G, Lisk D. Residues of diazinon, coumaphos, ciodrin, methoxychlor, and rotenone in cow’s milk from treatments similar to those used for ectoparasite and fly control on dairy cattle, with notes on safety of diazinon and ciodrin to calves. J. Econ. Entomol., 1968, 61(5): 1394–1398.

    PubMed  CAS  Google Scholar 

  • Matuschka F R, Richter D, Fischer P, et al. Time of repletion of subadult Ixodes ricinus ticks feeding on diverse hosts. Parasitol. Res., 1990, 76(6): 540–544.

    PubMed  CAS  Google Scholar 

  • Miller R J, Rentaria J A, Martinez H Q, et al. Characterization of permethrin-resistant Boophilus microplus (Acari: Ixodidae) collected from the state of Coahuila, Mexico. J. Med. Entomol., 2007, 44(5): 895–897.

    PubMed  Google Scholar 

  • Miller R J, George J E, Guerrero F, et al. Characterization of acaricide resistance in Rhipicephalus Sanguineus (latreille) (Acari: Ixodidae) collected from the Corozal Army Veterinary Quarantine Center, Panama. J. Med. Entomol., 2001, 38(2): 298–302.

    PubMed  CAS  Google Scholar 

  • Munderloh U G, Kurtti T J. Cellular and molecular interrelationships between ticks and prokaryotic tick-borne pathogens. Ann. Rev. Entomol., 1995, 40: 221–243.

    CAS  Google Scholar 

  • Narasimhan S, DePonte K, Marcantonio N, et al. Immunity against Ixodes scapularis salivary proteins expressed within 24 hours of attachment thwarts tick feeding and impairs Borrelia transmission. PLoS ONE, 2007, 2(5): e451.

    PubMed  Google Scholar 

  • Narasimhan S, Koski R A, Beaulieu B, et al. A novel family of anticoagulants from the saliva of Ixodes scapularis. Insect Mol. Biol., 2002, 11(6): 641–650.

    PubMed  CAS  Google Scholar 

  • Nolan J. Acaricide resistance in single and multi-host ticks and strategies for control. Parasitologia, 1990, 32(1): 145–153.

    CAS  Google Scholar 

  • Norval R A I, Perry B D, Young A S. The Epidemiology of Theileriosis in Africa. London: Academic Press, 1992: 481.

    Google Scholar 

  • Ntondini Z, van Dalen EM, Horak I G. The extent of acaricide resistance in 1-, 2-and 3-host ticks on communally grazed cattle in the Eastern region of the Eastern Cape Province, South Africa. J. S. Afr. Vet. Assoc., 2008, 79(3): 130–135.

    PubMed  CAS  Google Scholar 

  • Nunn M A, Sharma A, Paesen G C, et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J. Immunol., 2005, 174: 2084–2091.

    PubMed  CAS  Google Scholar 

  • Nunn M A, Rovers P, Ahmat N, et al. Bi-functional inhibitor of host complement and eicosanoid inflammatory signaling cascades. Proceedings of VI International Conference on Ticks and Tickborne Pathogens. 2008: 87.

    Google Scholar 

  • Nuttall PA, Trimnell A R, Kazimirova M, et al. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol., 2006, 28(4): 155–163.

    PubMed  CAS  Google Scholar 

  • Nuttall PA, Labuda M. Tick-host interactions: saliva activated transmission. Parasitology, 2004, 129Suppl: S177–189.

    PubMed  CAS  Google Scholar 

  • Nuttall PA, Paesen G C, Lawrie C H, et al. Vector host interactions in disease transmission. J. Mol. Microbiol. Biotechnol., 2000, 2: 381–386.

    PubMed  CAS  Google Scholar 

  • Odongo D, Kamau L, Skilton R, et al. Vaccination of cattle with TickGard induces cross-reactive antibodies binding to conserved linear peptides of Bm86 homologues in Boophilus decoloratus. Vaccine, 2007, 25(7): 1287–1296.

    PubMed  CAS  Google Scholar 

  • Ohnishi J, Piesman J, de Silva A M. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc. Natl. Acad. Sci. USA, 2001, 98(2): 670–675.

    PubMed  CAS  Google Scholar 

  • Oliver J H Jr. Biology and systematics of ticks (Acari: Ixodidae). Annual Review of Ecology and Systematics, 1989, 20: 397–430.

    Google Scholar 

  • Oliver J H Jr, Lin T, Gao L, et al. An enzootic transmission cycle of Lyme borreliosis spirochetes in the Southeastern United States. Proc. Natl. Acad. Sci. USA, 2003, 100(20): 11642–11645.

    PubMed  CAS  Google Scholar 

  • Paesen G C, Adams P L, Harlos K, et al. Tick histamine-binding proteins: isolation, cloning, and three dimensional structure. Mol. Cell, 1999, 3: 661–671.

    PubMed  CAS  Google Scholar 

  • Pal U, Fikrig E. Adaptation of Borrelia burgdorferi in the vector and vertebrate host. Microbes Infect., 2003, 5(7): 659–666.

    PubMed  Google Scholar 

  • Pal U, de Silva A M, Montgomery R R, et al. Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein a. J. Clin. Invest., 2000, 106(4): 561–569.

    PubMed  CAS  Google Scholar 

  • Pal U, Montgomery R R, Lusitani D, et al. Inhibition of Borrelia burgdorferi-tick interactions in vivo by outer surface protein a antibody. J. Immunol., 2001, 166(12): 7398–7403.

    PubMed  CAS  Google Scholar 

  • Paveglio S A, Allard J, Mayette J, et al. The tick salivary protein, salp15, inhibits the development of experimental asthma. J. Immunol., 2007, 178(11): 7064–7071.

    PubMed  CAS  Google Scholar 

  • Peconick A P, Sossai S, Girao F A, et al. Synthetic vaccine (SBm7462) against the cattle tick Rhipicephalus (Boophilus) microplus: preservation of immunogenic determinants in different strains from South America. Exp. Parasitol., 2008, 119: 37–43.

    PubMed  CAS  Google Scholar 

  • Pipano E, Alekceev E, Galker F, et al. Immunity against Boophilus annulatus induced by the Bm86 (tick-gard) vaccine. Exp. Appl. Acarol., 2003, 29(1–2): 141–149.

    PubMed  CAS  Google Scholar 

  • Prevot P P, Couvreur B, Denis V, et al. Protective immunity against Ixodes ricinus induced by a salivary serpin. Vaccine, 2007, 25(17): 3284–3292.

    PubMed  CAS  Google Scholar 

  • Rachinsky A, Guerrero F D, Scoles G A. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet. Parasitol., 2008, 152(3–4): 294–313.

    PubMed  CAS  Google Scholar 

  • Rand K N, Moore T, Sriskantha A, et al. Cloning and expression of a protective antigen from the cattle tick Boophilus microplus. Proc. Natl. Acad. Sci. USA, 1989, 86: 9657–9661.

    PubMed  CAS  Google Scholar 

  • Ribeiro J M. Role of saliva in blood-feeding by arthropods. Annu. Rev. Entomol., 1987, 32: 463–478.

    PubMed  CAS  Google Scholar 

  • Ribeiro J M. Role of saliva in tick/host interactions. Exp. Appl. Acarol., 1989, 7(1): 15–20.

    PubMed  CAS  Google Scholar 

  • Ribeiro J M, Alarcon-Chaidez F, Francischetti I M, et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol., 2006, 36(2): 111–129.

    PubMed  CAS  Google Scholar 

  • Richardson M A, Smith D R, Kemp D H, et al. Native and baculovirus-expressed forms of the immuno-protective protein Bm86 from Boophilus microplus are anchored to the cell membrane by a glycosyl-phosphatidyl inositol linkage. Insect Mol. Biol., 1993, 1: 139–147.

    PubMed  CAS  Google Scholar 

  • Rosado-Aguilar J A, Rodriguez-Vivas R I, Garcia-Vazquez Z, et al. Development of amitraz resistance in field populations of Boophilus microplus (Acari: Ixodidae) undergoing typical amitraz exposure in the Mexican tropics. Vet. Parasitol., 2008, 152(3–4): 349–353.

    PubMed  CAS  Google Scholar 

  • Rosario-Cruz R, Almazan C, Miller R J, et al. Genetic basis and impact of tick acaricide resistance. Front. Biosci., 2009, 14: 2657–2665.

    PubMed  CAS  Google Scholar 

  • Roversi P, Lissina O, Johnson S, et al. The structure of OMCI, a novel lipocalin inhibitor of the complement system. J. Mol. Biol., 2007, 369: 784–793.

    PubMed  CAS  Google Scholar 

  • Santos I K, Valenzuela J G, Ribeiro JM, et al. Gene discovery in Boophilus microplus, the cattle tick: The transcriptomes of ovaries, salivary glands, and hemocytes. Ann. N. Y. Acad. Sci., 2004, 1026: 242–246.

    PubMed  CAS  Google Scholar 

  • Sauer J R, McSwain J L, Bowman A S, et al. Tick salivary gland physiology. Annu. Rev. Entomol., 1995, 40: 245–267.

    PubMed  CAS  Google Scholar 

  • Schroeder H, Daix V, Gillet L, et al. The paralogous salivary anti-complement proteins irac i and irac ii encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species. Microbes Infect., 2007, 9(2): 247–250.

    PubMed  CAS  Google Scholar 

  • Schuijt T J, Hovius JW, van Burgel N D, et al. The tick salivary protein salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infect. Immun., 2008, 76(7): 2888–2894.

    PubMed  CAS  Google Scholar 

  • Schwan T G. Ticks and Borrelia: Model systems for investigating pathogen-arthropod interactions. Infect. Agents Dis., 1996, 5(3): 167–181.

    PubMed  CAS  Google Scholar 

  • Schwan T G, Piesman J. Temporal changes in outer surface proteins a and c of the Lyme diseaseassociated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J. Clin. Microbiol., 2000, 38(1): 382–388.

    PubMed  CAS  Google Scholar 

  • Schwan T G, Piesman J, Golde W T, et al. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc. Natl. Acad. Sci. USA, 1995, 92(7): 2909–2913.

    PubMed  CAS  Google Scholar 

  • Seixas A, Leal A T, Nascimento-Silva M C, et al. Vaccine potential of a tick vitellin-degrading enzyme (VTDCE). Vet. Immunol. Immunopathol., 2008, 124: 332–340.

    PubMed  CAS  Google Scholar 

  • Solomon K R. Acaricide resistance in ticks. Adv. Vet. Sci. Comp. Med., 1983, 27: 273–296.

    PubMed  CAS  Google Scholar 

  • Sonenshine D E, Kocan K M, de la Fuente J. Tick control: Further thoughts on a research agenda. Trends Parasitol., 2006, 22(12): 550–551.

    PubMed  Google Scholar 

  • Sonenshine D E. Biology of Ticks, Vol. 1. New York: Oxford University Press, 1991.

    Google Scholar 

  • Sonenshine D E. Biology of Ticks, Vol. 2. New York: Oxford University Press, 1993.

    Google Scholar 

  • Steen N A, Barker S C, Alewood P F. Proteins in the saliva of the Ixodida (ticks): Pharmacological features and biological significance. Toxicon, 2006, 47(1): 1–20.

    PubMed  CAS  Google Scholar 

  • Szabo M P, Castagnolli K C, Santana D A, et al. Amblyomma cajennense ticks induce immediate hypersensitivity in horses and donkeys. Exp. Appl. Acarol., 2004, 33(1–2): 109–117.

    PubMed  Google Scholar 

  • Thullner F, Willadsen P, Kemp D. Acaricide rotation strategy for managing resistance in the tick Rhipicephalus (Boophilus) microplus (Acarina: Ixodidae): Laboratory experiment with a field strain from Costa Rica. J. Med. Entomol., 2007, 44(5): 817–821.

    PubMed  Google Scholar 

  • Tyson K, Elkins C, Patterson H, et al. Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect Mol. Biol., 2007, 16(4): 469–479.

    PubMed  CAS  Google Scholar 

  • Ueti MW, Knowles D P, Davitt C M, et al. Quantitative differences in salivary pathogen load during tick transmission underlie strain-specific variation in transmission efficiency of Anaplasma marginale. Infect. Immun., 2009, 77: 70–75.

    PubMed  CAS  Google Scholar 

  • Valenzuela J G. High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem. Mol. Biol., 2002, 32(10): 1199–1209.

    PubMed  CAS  Google Scholar 

  • Valenzuela J G. High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem. Mol. Biol., 2002, 32(10): 1199–1209.

    PubMed  CAS  Google Scholar 

  • Valenzuela J G. Exploring tick saliva: From biochemistry to’ sialomes’ and functional genomics. Parasitology, 2004, 129Suppl: S83–94.

    PubMed  CAS  Google Scholar 

  • Vancova I, Slovak M, Hajnicka V, et al. Differential anti-chemokine activity of Amblyomma variegatum adult ticks during blood-feeding. Parasite Immunol., 2007, 29(4): 169–177.

    PubMed  CAS  Google Scholar 

  • Villarino M A, Waghela S D, Wagner G G. Biochemical detection of esterases in the adult female integument of organophosphate-resistant Boophilus microplus (Acari: Ixodidae). J. Med. Entomol., 2003, 40(1): 52–57.

    PubMed  CAS  Google Scholar 

  • von Lackum K, Ollison K M, Bykowski T, et al. Regulated synthesis of the Borrelia burgdorferi inner-membrane lipoprotein Ipla7 (p22, p22-a) during the Lyme disease spirochaete’s mammaltick infectious cycle. Microbiology, 2007, 153(Pt 5): 1361–1371.

    Google Scholar 

  • Wikel S K. Immunological control of hematophagous arthropod vectors: Utilization of novel antigens. Vet. Parasitol., 1988, 29(2–3): 235–264.

    PubMed  CAS  Google Scholar 

  • Wikel S K. Tick modulation of host cytokines. Exp. Parasitol., 1996, 84(2): 304–309.

    PubMed  CAS  Google Scholar 

  • Wikel S K. Tick modulation of host immunity: An important factor in pathogen transmission. Int. J. Parasitol., 1999, 29(6): 851–859.

    PubMed  CAS  Google Scholar 

  • Wikel S K, Whelen A C. Ixodid-host immune interaction. Identification and characterization of relevant antigens and tick—induced host immunosuppression. Veterinary Parasitology, 1986, 20(1–3): 149–174.

    CAS  Google Scholar 

  • Wikel S K, Ramachandra R N, Bergman D K. Tick—induced modulation of the host immune response. Int. J. Parasitol., 1994, 24(1): 59–66.

    PubMed  CAS  Google Scholar 

  • Willadsen P. Immunity to ticks. Adv. Parasitol., 1980, 18: 293–311.

    PubMed  CAS  Google Scholar 

  • Willadsen P. Immunological approaches to the control of ticks. Int. J. Parasitol., 1987, 17: 671–677.

    PubMed  CAS  Google Scholar 

  • Willadsen P. Perspectives for subunit vaccines for the control of ticks. Parassitologia, 1990, 32: 195–200.

    PubMed  CAS  Google Scholar 

  • Willadsen P. Anti-tick vaccines. Parasitology, 2004, 129Suppl: S367–387.

    PubMed  CAS  Google Scholar 

  • Willadsen P, Jongejan F. Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol. Today, 1999, 15(7): 258–262.

    PubMed  CAS  Google Scholar 

  • Willadsen P, Williams P G. Isolation and partial characterization of an antigen from the cattle tick, Boophilus microplus. Immunochemistry, 1976, 13(7): 591–597.

    PubMed  CAS  Google Scholar 

  • Willadsen P, McKenna R V. Vaccination with ‘concealed’ antigens: Myth or reality? Parasite Immunol., 1991, 13(6): 605–616.

    PubMed  CAS  Google Scholar 

  • Willadsen P, Kemp D H. Novel vaccination for control of the Babesia vector, Boophilus microplus. Trans. R. Soc. Trop. Med. Hyg., 1989, 83Suppl: 107.

    PubMed  Google Scholar 

  • Willadsen P, Riding G A, McKenna R V, et al. Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J. Immunol., 1989, 143: 1346–1351.

    PubMed  CAS  Google Scholar 

  • Willadsen P, Bird P, Cobon G S, Hungerford J. Commercialisation of a recombinant vaccine against Boophilus microplus. Parasitology, 1995, 110Suppl: S43–50.

    PubMed  Google Scholar 

  • Willadsen P, McKenna R V, Riding G A. Isolation from the cattle tick, Boophilus microplus, of antigenic material capable of eliciting a protective immunological response in the bovine host. Int. J. Parasitol., 1988, 18: 183–189.

    PubMed  CAS  Google Scholar 

  • Woodman M E, Cooley A E, Stevenson B. Production of outer surface protein A by Borrelia burgdorferi during transmission from infected mammals to feeding ticks is insufficient to trigger OspA seroconversion. FEMS Immunol. Med. Microbiol., 2008, 54: 277–282.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fang, Q.Q., Pung, O.J. (2011). Anti-tick Vaccine Development: Status and Perspectives. In: Liu, T., Kang, L. (eds) Recent Advances in Entomological Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17815-3_21

Download citation

Publish with us

Policies and ethics