Skip to main content

Gynäkologie

  • Chapter
PET/CT-Atlas

Zusammenfassung

Die diagnostischen Möglichkeiten bei gynäkologischen Malignomen haben sich – auch nuklearmedizinisch gesehen – inzwischen über die Skelettszintigraphie und andere szintigraphische Verfahren [8] hinaus erweitert (s. Literatur auf DVD [7 7.1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adler LP, Faulhaber PF, Schnur KC et al (1997) Axillary lymphnode metastases: screening with (F-18)2-deoxy-2fluoro-D-glucose (FDG) PET. Radiology 203: 323–327

    Google Scholar 

  2. Aukema TS, Rutgers EJT, Vogel WV et al. (2009) Can FDG PET/CT replace conventional imaging in patients with locoregional breast cancer recurrrence? P094, S329

    Google Scholar 

  3. Avril N, Dose J, Jänicke F, Ziegler S et al. (1996) Assessment of axillary lymphnode involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxyglucose. J Natl Cancer Inst 88: 1204–1209

    PubMed  CAS  Google Scholar 

  4. Avril N, Menzel M, Dose J et al. (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: Histologic and immunohistochemical tissue analysis. J Nucl Med 42: 9–16

    PubMed  CAS  Google Scholar 

  5. Bakir MA, Eccles SA, Babich JW, Aftab N, Styles JM, Dean CJ, Ott RJ (1992) c-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monclonal antibodies. J Nucl Med 33: 2154–2160

    PubMed  CAS  Google Scholar 

  6. Basu S, Alavi A (2007) Defining co-related parameters between ›metabolic‹ flare and ›clinical‹, ›biochemical‹, and ›osteoblastic‹ flare and establishing guidelines for assessing response to treatment in cancer. Eur J Nucl Med Mol Imaging 34: 441–443

    PubMed  Google Scholar 

  7. Basu S, Houseini M, Mavi A et al. (2007) Correlation of standard uptake value and its change over time in FDG PET imaging with the histopathological characteristics of primary breast malignancy at diagnosis. J Nucl Med 48 (Suppl 2): 139P

    Google Scholar 

  8. Baum RP, Hör G (1988) Immunszintigraphie gynäkologischer Tumoren. In: Käser O, Friedberg V, Ober KG, Thomsen K (Hrsg) Gynäkologie und Geburtshilfe. Zander, Stuttgart, S 24.48–24.55

    Google Scholar 

  9. Belhocine TZ (2003) An appraisal of 18F-FDG PET imaging in post-therapy surveillance of uterine cancers: clinical evidence and a research proposal. Int J Gynecol Cancer 13: 228–233

    PubMed  CAS  Google Scholar 

  10. Belhozine TZ (2004) 18F-FDG PET imaging in posttherapy monitoring of cervical cancers: from diagnosis to prognosis. J Nucl Med 45: 1602–1604

    Google Scholar 

  11. Beral V et al. (2007) Ovarian cancer and hormone replacement therapy in the million women study. Lancet 369: 1703

    PubMed  CAS  Google Scholar 

  12. Bick U (2006) Mammographie -Screening in Deutschland: Wie, wann und warum?. Fortschr Röntgenstr 178: 957–69

    CAS  Google Scholar 

  13. Blodgett T, Townsend D (2004) Combined PET/CT in gynecological malignancies. http://www.imagingergonomics.com/issues/articles/2003-07_090. Zugegriffen: 8. März 2011

  14. Bombardieri E, Gianni L (2004) Breast Cancer: diagnostic and therapeutic options. Eur J Nucl Med 31: S1–S186

    Google Scholar 

  15. Bombardieri E, Gianni L (2004) The choice of the correct imaging modality in breast cancer management. Eur J Nucl Med Mol Imaging 31: S179–186

    PubMed  Google Scholar 

  16. Bos R, van Der Hoeven JJ, van Der Wall E et al. (2002) Biological correlates of (18)fluordeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20: 379–387

    PubMed  CAS  Google Scholar 

  17. Bristow RE, del Carmen MG, Pannu HK et al. (2003) Clinically occult recurrent ovarian cancer: patient selection for secondary cytoreductive surgery usaing combinded PET/CT. Gynecol Oncol 90: 519–528

    PubMed  Google Scholar 

  18. Bubley GJ (2001) Is the flare phenomenon clinically significant? Urology 58 (2 Suppl 1): 5–9

    PubMed  CAS  Google Scholar 

  19. Buck AK, Schirrmeister H, Mattfeld T, Reske SN (2004) Biological characterization of breast cancer by means of PET. Eur J Nucl Med Mol Imaging 31 (Suppl 1): S80–S87

    PubMed  Google Scholar 

  20. Buscombe JR, Miller RF, Lui D, Ell PJ (1991) Combined 67Ga citrate and 99Tcm-human immunoglobulin imaging in human immunodeficiency virus-positive patients with fever of undetermined origin. Nucl Med Comm 12: 583–592

    CAS  Google Scholar 

  21. Buscombe JR, Cwikla JB, Holloway B, Hilson AJW (2001) Prediction of the usefullness of combined mammography and scintimammography in suspected primary breast cancer using ROC curves. J Nucl Med 42: 3–8

    PubMed  CAS  Google Scholar 

  22. Cermik TF, Mavi A, Basu S, Alavi A (2008) Impact of FDG PET on the preoperative staging of newly diagnosed breast cancer. Eur J Nucl Med Mol Imaging 35: 475

    PubMed  Google Scholar 

  23. Cho SM, Ha HK, Byun HK (2002) Usefulness of FDG PET for assessment of early recurrent epithelial ovarian cancer. Am J Roentgenol 179: 391–395

    Google Scholar 

  24. Cohade C, Osman M, Pannu HK, Wahl RL (2003) Uptake in supraclavicular area fat («USA-fat«): description on 18F-FDG PET/CT. J Nucl Med 44: 170–176

    PubMed  CAS  Google Scholar 

  25. Coleman RE, Mashiter G, Whitaker KB, Rubens RD, Fegelman I (1988) Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 29: 1354–1359

    PubMed  CAS  Google Scholar 

  26. Cook GJ, Houston S, Rubens R, et al. (1998) Detection of bone metastases in breast cancer by FDG PET: differing metabolic activity in osteoblatic and osteolytic lesions. J Clin Oncol 16: 3375–3379

    PubMed  CAS  Google Scholar 

  27. Cordobes MD, Starzee A, Delmon-Moingeon L et al. (1996) Technetium-99m-Sestamibi uptake by human benign and malignant breast tumor cells: Correlation with MDR gene expression. J Nucl Med 37: 286–289

    PubMed  CAS  Google Scholar 

  28. Costa SD, Bastert G (1992) Die Bedeutung des HER-2/neu-Onkogens in der Diagnostik des Mammakarzinoms. Dt Ärztebl 35: 843–849

    Google Scholar 

  29. Crippa F, Agresti R, Seregni E et al. (1998) Prospective evaluation of fluorine-18-FDG PET in presurgical staging of the axilla in breast cancer. J Nucl Med 39: 4–8

    PubMed  CAS  Google Scholar 

  30. Crippa F, Gerali A, Alessi A et al. (2004) FDG-PET for axillary lymph node staging in primary breast cancer. Eur J Nucl Med Mol Imaging 31 (Suppl 1): S97–S102

    PubMed  Google Scholar 

  31. Currilova Z, Yaman BF, Dorbola S (2009) Quantitative relationship between coronary calcium content and coronary flow reserve as assessed by integrated PET/CT imaging. J Nucl Med Mol Imaging 36: 1603–1610

    Google Scholar 

  32. Czernin J (2002) FDG-PET in breast cancer: different view of its clinical usefulness. Mol Imaging Biol 4: 35–45

    PubMed  Google Scholar 

  33. Czernin J, Auerbach MA (2005) Clinical PET/CT imaging: promises and misconceptions. Nuklearmedizin 44: S18

    PubMed  Google Scholar 

  34. Daidone MG, Paradiso A, Gion M et al. (2004) Biomolecular features of clinical relevance in breast cancer. Eur J Nucl Med Mol Imaging (Suppl 1) 31: S3–S14

    PubMed  CAS  Google Scholar 

  35. Dehdashti F, McGuire AH, van Brocklin HF et al. (1991) Assessment of 21-(18F)fluoro-16α-ethyl-19-norprogesterone as a positronemitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J Nucl Med 32: 1532–1 537

    PubMed  CAS  Google Scholar 

  36. Dehdashti F, Flanagan FL, Mortimer JE et al. (1999) Positron emission tomographic assessment of «metabolic flare« to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26: 51–56

    PubMed  CAS  Google Scholar 

  37. DiMaggio C (2004) State of the art of current modalities for the diagnosis of breast lesions. Eur J Nucl Med Mol Imaging 31: S56– S69

    Google Scholar 

  38. Domenighetti G, D` Avanzo B, Egger M, et al. (2003) Women’s perception of the benefits of mammography screening: populationbased survey in four countries. Int J Epidemiol 32: 816

    PubMed  Google Scholar 

  39. Duch J, Fuster D, Munoz M et al. (2009) 18F-FDG PET/CT for early prediction of response to neoadjuvant chemotherapy in breast cancer. Eur J Nucl Med Mol Imaging 36: 1551

    PubMed  CAS  Google Scholar 

  40. Eubank WB, Mankoff DA, Takasugi J et al. (2001) 18fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer. J Clin Oncol 19: 3516–3523

    PubMed  CAS  Google Scholar 

  41. Even-Sapir E (2005) Imaging of malignant bone involvement by morphological, scintigraphic and hybrid modalities. J Nucl Med 46: 1356-1367

    PubMed  Google Scholar 

  42. Even-Sapir E, Metser U, Flusser G et al. (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45: 272–278

    PubMed  Google Scholar 

  43. Fischer T, Filimonow S, Slowinski T, Hamm B, Thomas A (2006) Dignitätsbeurteilung mammasonographischer Herde mittels dreidimensionaler Darstellung. Fortschr Rötgenstr 178(12): 1224– 1234

    CAS  Google Scholar 

  44. Flanagan FL et al. (1998) PET in breast cancer. Semin Nucl Med 28: 290–302

    PubMed  CAS  Google Scholar 

  45. Fueger B, Weber W, Quon A et al. (2005) Performance of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography and integrated PET/CT in restaged breast cancer patients. Mol Imaging Biol 7: 369–376

    PubMed  Google Scholar 

  46. Ghanem N, Uhl M, Brink I et al. (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol 55: 41–55

    PubMed  CAS  Google Scholar 

  47. Giersiepen K, Hartje U, Hentschel S et al. (2004) Brustkrebsregistrierung in Deutschland – Tumorstadienverteilung in der Zielgruppe für das Mammographie-Screening. Dt Ärztebl 101: 2117– 2122

    Google Scholar 

  48. Gigerenzer G (2004) Das Einmaleins der Skepsis. Berliner Taschenbuchverlag (BTV), S 1437–1498

    Google Scholar 

  49. Gillespie PJ, Alexander JL, Edelstyn GA (1973) High concentration of 99mTc-sulfur colloid found during routine liver scan in lungs of patient with advanced breast cancer. J Nucl Med 14: 711–712

    PubMed  CAS  Google Scholar 

  50. Gödde E (1999) Klinische Bedeutung der Identifizierung und Charaktersierung von zirkulierenden Tumorzellen. Med Klin 94 (Suppl 3): 25–28

    Google Scholar 

  51. Gould P (2009) Breast Care Solutions – November 2009: Breast MRI wins status as must-have modality. Diagn Imaging Europe Nov: 1

    Google Scholar 

  52. Grahek D, Montravers F, Kerrou K et al. (2004) [18F]FDG in recurrent breast cancer: diagnostic performances, clinical impact and relevance of induced changes in management. Eur J Nucl Med Mol Imaging 31: 179–188

    PubMed  Google Scholar 

  53. Hoegerle S, Juengling F, Otte A et al. (1998) Combined FDG and [F-18]fluoride whole body PET: a feasible two-in-one approach to cancer imaging? Radiology 209: 253–258

    PubMed  CAS  Google Scholar 

  54. Hoh CK, Glapsy JA, Choi Y, Tse N, Rege S, Nitzsche EU, Dahlbom M, Maddahi J, Hoffman EJ, Phelps ME, Hawkins RA (1992) Quantitative dynamic and whole body PET FDG imaging of breast cancer. J Nucl Med 33: 828

    Google Scholar 

  55. Hubner KF, McDonald TW, Niethammer JG et al. (1993) Assessment of primary and metastastic ovarian cancer by positron emission tomography (PET) using 2-[18F]deoxyglucose (2-[18F] FDG). Gynecol Oncol 51: 197–204

    PubMed  CAS  Google Scholar 

  56. Humphrey LL, Helfant M, Chan BKS, Woolf SH (2002) Breast cancer screening: A summary of the evidence for the U.S. preventive services task force. Ann Intern Med 137: 347–360

    PubMed  Google Scholar 

  57. Israel O, Kuten A (2007) Early detection of cancer recurrence: 18-FDG PET/CT can make a difference in diagnosis and patient care. J Nucl Med 46 (Suppl 1): 28–35

    Google Scholar 

  58. Janni W, Pantel K, Racke B et al. (2004) Isolierte disseminierte Tumorzellen im Knochenmark von Brustkrebspatientinnen (Methodik, Biologie und klinische Relevanz). Dtsch Ärztebl 101: 3496–3502

    Google Scholar 

  59. Jansson T, Westlin JE, Ahlström H et al. (1995) Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: A method for early therapy evaluation? J Clin Oncol 13: 1470–1477

    PubMed  CAS  Google Scholar 

  60. Jemal A, Murray T, Ward E et al. (2005) Cancer Statistics 2005. CA Cancer Clin 55: 10–30

    Google Scholar 

  61. Kao CH, Hsieh JF, Tsai SC et al. (2000) Comparison and discrepancy of 18F-2-deoxyglucose positron emission tomography and Tc-99m MDP bone scan to detect bone metastases. Anticancer Res 20: 2189–2192

    PubMed  CAS  Google Scholar 

  62. Kaufmann M, Jonat W (1998) Therapie des primären Mammakarzinoms (St. Gallen Vorschläge). Dt Ärztebl 95

    Google Scholar 

  63. Kaur H, Iyer PM, Silverman RP et al. (2003) Diagnosis, staging and surveillance of cervical carcinoma. Am J Roentegnol 180: 1621– 1632

    Google Scholar 

  64. Khalkhali I, Diggles LE, Taillefer R, Vandestreck PR et al. (1999) Procedure guidelines for breast scintigraphy. J Nucl Med 40: 1233–1235

    PubMed  CAS  Google Scholar 

  65. Kilbourn MR, Zalutsky MR (1985) Research and clinical potential of receptor based radio-pharmaceuticals. J Nucl Med 26: 655–662

    PubMed  CAS  Google Scholar 

  66. Kim EE, Kim BT, Haynie TP, Podoloff DA, Wong WH, Yang DJ, Tilbury RS, Hortobagyi G (1992) Evaluation of preoperative chemotherapy in patients with locoregionally advanced breast cancer using 18F-FDG PET. J Nucl Med 33: 828

    Google Scholar 

  67. Kim S, Chung J, Kang S et al. (2004) [18F]FDG as a substitute for second-look laparatomy in patients with advanced ovarian carcinoma. Eur J Nucl Med Mol Imaging 31: 196–201

    PubMed  Google Scholar 

  68. Kopans DB, Monsees B, Feig SA (2003) Screening for cancer: When is it valid? Lessons from the mammography experience. Radiology 229: 319

    PubMed  Google Scholar 

  69. Krak NC, Hoekstra OS, Lammertsma AA (2004) Measuring response to chemotherapy in locally advanced breast cancer: methodological considerations. Eur J Nucl Med Mol Imaging 31 (Suppl 1): S103–S111

    PubMed  Google Scholar 

  70. Kubik-Huch RA, Dorffler W, von Schulthess GK et al. (2000) Value of (18F)-FDG positron emission tomography, computed tomography and magnetic resonance imaging in diagnosing primary and recurrent ovarian carcinoma. Eur Radiol 10: 761–776

    PubMed  CAS  Google Scholar 

  71. Kürzl R (2004) Evidenzbasierte Missverständnisse beim Mammakarzinom. Dt Ärztebl 101: C1935–1938

    Google Scholar 

  72. Lehman CD, Gatsonis C, Kuhl CHK et al. (2007) MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 336: 1295–1303

    Google Scholar 

  73. Lerman H, Metser U, Grisaru D et al. (2004) Normal and abnormal 18F-FDG endometrial and ovarian uptake in pre-and postmenopausal patients: assessment by PET/CT. J Nucl Med 45: 266–271

    PubMed  Google Scholar 

  74. Lind P, Igerc I, Beyer T et al. (2004) Advantages and limitations of FDG PET in the follow-up of breast cancer. Eur J Nucl Med Mol Imaging 31 (Suppl 1): S125–S134

    PubMed  Google Scholar 

  75. Litmanovich D, Gourevich K, Israel O, Gallimidi Z (2009) Unexpected foci of 18F-FDG uptake in the breast detected by PET/CT: incidence and clinical significance. Eur J Nucl Med Mol Imaging 36:1558

    PubMed  CAS  Google Scholar 

  76. Lordick F, Ott K, Krause BJ (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8: 797–805

    PubMed  Google Scholar 

  77. MacDonald DJ, Sand S, Cass F et al. (2006) The power of partnership: extending comprehensive cancer center expertise in clinical cancer genetics to community breast care centers. Semin Breast Dis 9: 39–47

    Google Scholar 

  78. Maffioli L, Florimonte L, Pagini L et al. (2004) Current role of bone scan with phophonates in the follow-up of breast cancer. Eur J Nucl Med Mol Imaging 31: S143–S148

    PubMed  Google Scholar 

  79. Makhija S, Howden N, Edwards R et al. (2002) Positron emission tomography/computed tomography imaging for the detection of recurrent ovarian and fallopian tube carcinoma: A retrospective review. Gynecol Oncol 85: 53–58

    PubMed  CAS  Google Scholar 

  80. Mangili G, Picchio M, Sironi S et al. (2007) Integrated PET/CT as a first-line restaging modality in patients with suspected recurrence of ovarian cancer. Eur J Nucl Med Mol Imaging 34: 658– 666

    PubMed  CAS  Google Scholar 

  81. Mann A (1999) Women’s health issues and nuclear medicine, part II: women and breast cancer. J Nucl Med Technol 27: 184–187

    PubMed  CAS  Google Scholar 

  82. Mansi JJ (1987) Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br Med J 295: 1093–1096

    CAS  Google Scholar 

  83. Marzola M, Grassetto G, Banti E et al. (2009) The role of 18F-FDG PET/CT in breast cancer patients with increased serum Ca 15-3 levels and negative conventional imaging. Eur J Nucl Med Mol Imaging (Abstr. Ann. Congress 2009): OPO94, S175

    Google Scholar 

  84. Mavi A, Urhan M, Yu JQ et al. (2006) Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med 47: 1440– 1446

    PubMed  Google Scholar 

  85. McGuire WL, Clark GM (1992) Prognostic factors and treatment decisions in axillary-node-negative breast cancer. N Engl J Med 326: 1756–1761

    PubMed  CAS  Google Scholar 

  86. Mehta TS (2003) Current uses of ultrasound in the evaluation of breast. Radiol Clin North Am 41: 841–850

    PubMed  Google Scholar 

  87. Meißner M (2009) Mammographie-Screening-Kleine Tumoren früher entdeckt (Medizinreport). Dt Ärztebl 106: C1722

    Google Scholar 

  88. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, Katzenellenbogen JA (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169: 45–48

    PubMed  CAS  Google Scholar 

  89. Mohnike W (2004) Erste Erfahrungen mit PET/CT im niedergelassenen Bereich, klinische Highlights, ökonomische Daten. Diagn Therapeut Zentrum, Berlin und BDN 22

    Google Scholar 

  90. Mold J, Stein H (1986) The cascade effect in the clinical care of patients. N Engl J Med 314: 512–514

    PubMed  CAS  Google Scholar 

  91. Morris EA (2007) Diagnostic breast MR imaging: current status and future directions. Radiol Clin North Am 45(5): 863

    PubMed  Google Scholar 

  92. Morris EA, Liberman L (2005) Breast MRI: diagnosis and intervention. Springer, New York

    Google Scholar 

  93. Munz DL (2001) The sentinel lymph node concept in oncology. Zuckerschwerdt, München

    Google Scholar 

  94. Munz DL, Hör G (1981) Die Bedeutung der funktionellen Knochenmarkszintigraphie in der Tumordiagnostik. Deutsche Gesellschaft für Innere Medizin, München, S1105–1112

    Google Scholar 

  95. Munz DL, Maza S, Ivancevic V, Geworski L (2000) Classification of the lymphatic drainage status of a primary tumor: a proposal. Nuklearmedizin 39: 88–91

    PubMed  CAS  Google Scholar 

  96. Nakamoto Y, Tatsumi M, Cohade C et al. (2003) Accuracy of image fusion of normal upper abdominal organs visualized with PET/CT. Eur J Nucl Med Mol Imaging 30: 597–602

    PubMed  Google Scholar 

  97. Nakamoto Y, Cohade C, Tatsumi M et al. (2005) CT appearance of bone metastases detection with FDG-PET as part of the same PET/CT examination. Radiology 237: 627–342

    PubMed  Google Scholar 

  98. Narayan K, Hicks RJ, Jobling T et al. (2001) A comparison of MRI and PET scanning in surgically staged loco-regionally advanced cervical cancer: potential impact on treatment. J Gynecol Cancer 11: 263–271

    CAS  Google Scholar 

  99. Nyström L, Rutqvist LE, Wall S et al. (1993) Breast cancer screening with mammography. Overview of Swedish randomised trials. Lancet 341: 973–978

    PubMed  Google Scholar 

  100. Ochsenkühn T, Bayerdorffer E, Meining A et al. (2005) Increased prevalence of colorectal adenomas in women with breast cancer. Digestion 72: 150–155

    PubMed  Google Scholar 

  101. Osman MM, Cohade C, Nakamoto Y et al. (2003) Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 44: 240–243

    PubMed  Google Scholar 

  102. Ott K, Weber WA, Lordick F, Becker K, Busch R, Herrmann K, Wieder H, Fink U, Schwaiger M, Siewert JR (2006) Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin Oncol 24(29): 4692–4698

    PubMed  Google Scholar 

  103. Paans AMJ, Vaalburg W, Woldring MG (1985) A comparison of the sensitivity of PET and NMR for in vivo quantitative metabolic imaging. Eur J Nucl Med 11: 73–75

    PubMed  CAS  Google Scholar 

  104. Pandit-Taskar N (2005) Oncologic imaging in gynecologic malignancies. J Nucl Med 46: 1842–1850

    PubMed  Google Scholar 

  105. Paredes P, Vidal-Sicart S, Zanon G et al. (2005) Clinical relevance of sentinel lymphnodes in the internal mammary chain in breast cancer patients. Eur J Nucl Med Mol Imaging 32: 1283–1287

    PubMed  Google Scholar 

  106. Perlet C, Heywang-Kobrunner SH, Heinig A et al. (2006) Magnetic resonance-guided, vacuum-assisted breast biopsy: results from a European multicenter study of 538 lesions. Cancer 106(5): 982– 990

    PubMed  Google Scholar 

  107. Pestalozzi BC, Luporsy-Geli E, Jost LM, Bergh J (2005) ESMO Minimum Clinical Recommendations for diagnosis, adjuvant treatment and follow-up of primary breast cancer. Ann Oncol 16 (Suppl 1): i7–i9

    PubMed  Google Scholar 

  108. Plotkin D, Lechner JJ, Jung WE, Rosen PJ (1978) Tamoxifen flare in advanced breast cancer. JAMA 240: 2644–2646

    PubMed  CAS  Google Scholar 

  109. Ravdin PM (2006) As the median size of invasive breast cancers at time of diagnosis continues to fall, how does the oncologist guard against over-treatment? Semin Breast Dis 9: 25–29

    Google Scholar 

  110. Reske S, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, »Onko-PET III«, 21 July and 19 September 2000. Eur J Nucl Med 28: 1707–1723

    PubMed  CAS  Google Scholar 

  111. Rhodes DJ, O Connor MK, Pilips STW et al. (2005) Molecular breast imaging: a new technique using technetium Tc 99m scintimammography to detect small tumors of the breast. Mayo Clin Proc 80: 24–30

    PubMed  Google Scholar 

  112. van Rijk MC, Tanis PJ, Valdes Olmos RA (2004) Sentinel nodes outside the axilla and internal mammary chain in patients with breast carcinoma (Abstr. 398). Eur J Nucl Med Mol Imaging 31 (Suppl 2): S295–S296

    Google Scholar 

  113. Rivera E, Estorch M, Duch J et al. (2009) Role of sentinel lymph node biopsy in patients with T2 breast tumors and negative clinically axillary node. Eur J Nucl Med Imaging 36 (Suppl 2): OP302, S215

    Google Scholar 

  114. Ryu SY, Kim MH, Choi SC et al. (2003) Detection of early recurrence with 18F FDG PET in patients with cervical cancer. J Nucl Med 44: 347–352

    PubMed  Google Scholar 

  115. Sackett DL, Straus SE, Richardson WS, Rosenberg W, Haynes RB (2000) Evidence-based medicine: how to practice and teach EBM. Churchill Livingstone, London

    Google Scholar 

  116. Schaefer NG, Hany TF, C.Taverna et al. (2004) Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging – do we need contrast-enhanced CT? Radiology 232: 823–829

    PubMed  Google Scholar 

  117. Scheidhauer K, Scharl A, Schicha H (1998) Estrogen receptor scintigraphy. Q J Nucl Med. 42: 2326

    Google Scholar 

  118. Schillaci O, Buscombe JR (2004) Breast scintigraphy today: indications and limitations. Eur J Nucl Med Mol Imaging 31 (Suppl 1): S35–S45

    PubMed  Google Scholar 

  119. Schilling J (2007) High-resolution positron emission mammography in breast cancer. J Nucl Med 48 (Suppl 2): 139P

    Google Scholar 

  120. Schirrmeister H, Guhlmann A, Kotzerke J et al. (1999) Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 17: 2381–2391

    PubMed  CAS  Google Scholar 

  121. Schöder H, Gönen M (2007) Screening for cancer with PET and PET/C: Potential and limitations. J Nucl Med 48: 4S

    PubMed  Google Scholar 

  122. Schroder W, Zimny M, Rudlowski C et al. (1999) The role of 18F-fluoro-deoxyglucose positron emission tomography (18F-FDG PET) in diagnosis of ovarian cancer. Int J Gynocol Cancer 9: 117–122

    Google Scholar 

  123. Schwartz LM, Woloshin S, Fowler jr FJ, Welch HG (2004) Enthusiasm for cancer screening in the United States. J Am Med Ass 291: 71

    CAS  Google Scholar 

  124. Seebach J, Ellsworth RE, Shriver CD (2006) A molecular profiling of breast cancer. Semin Breast Dis 9: 19–24

    Google Scholar 

  125. Seregni E, Coli A, Mazzucca N (2004) Circulating tumour markers in breast cancer. Eur J Nucl Med Mol Imaging 31 (Suppl 1): S15– S22

    PubMed  Google Scholar 

  126. Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncological diagnosis with FDG-PET imaging: physiolgic and benign variants. Radiographics 19: 61–77

    PubMed  CAS  Google Scholar 

  127. Siggelkow W, Rath W, Büll U, Zimny M (2004) FDG PET and tumor markers in the diagnosis of recurrent and metastatic breast cancer. Eur J Nucl Med Mol Imaging 31: S118–S124

    PubMed  Google Scholar 

  128. Sironi S, Buda A, Picchio M et al. (2005) Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology. doi: 10.1148/radiol. 2381041799

    Google Scholar 

  129. Sironi S, Picchio M, Landoni C et al. (2007) Post-therapy surveillance of patients with uterine cancers: value of integrated PET/ CT in the detection of recurrence. Eur J Nucl Med Mol Imaging 34: 472–479

    PubMed  Google Scholar 

  130. Smith CI, Welch AE, Hutchon W et al. (2000) Positron emission tomography using 18F-fluorodeoxy D-glucose to predict the pathological response of breast cancer to primary chemotherapy. J Clin Oncol 18: 1676–1688

    PubMed  CAS  Google Scholar 

  131. Smith GT, Hubner KF, McDonald TH, Thie JA (1999) Cost analysis of FDG PET for managing patients with ovarian cancer. Clin Pos Imag 2: 63–70

    Google Scholar 

  132. Stehling MK (2007) Brustkrebsvorsorge. Diagnostik News 2: 02

    Google Scholar 

  133. Suzuki A, Kawano T, Takahashi N et al. (2004) Value of 18F-FDG PET in the detection of peritoneal carcinomatosis. Eur J Nucl Med 31: 1413–1420

    Google Scholar 

  134. Szabo BK, Aspelin B, Kristoffersen Wiberg M (2003) Invasive breast cancer: correlation of dynamic MR features with prognostic factors. Eur Radiol 13: 2425–2435

    PubMed  Google Scholar 

  135. Tabar L, Yen MF, Vitak B et al. (2003) Mammography service screening and mortality in breast cancer patients: 20 year follow-up before and after introduction of screening. Lancet 361: 1405–1410

    PubMed  Google Scholar 

  136. Tanis PJ, van Sandick JW, Nieweck OE et al. (2002) The hidden sentinel node in breast cancer. Eur J Nucl Med 29: 305–311

    CAS  Google Scholar 

  137. Tateishi U, Gamez C, Dawood S et al. (2009) Chronic thyreoiditis in patients with advanced breast carcinoma: metabolic and morphologic changes on PET-CT. Eur J Nucl Med Mol Imaging 36: 894

    PubMed  CAS  Google Scholar 

  138. Tatsumi M, Cohade C, Mourtzikos M et al. (2006) Initial experience with FDG-PET/CT in the evaluation of breast cancer. Eur J Nucl Med Mol Imaging 33: 254–262

    PubMed  Google Scholar 

  139. Tiling R, Stephan K, Sommer H et al. (2004) Tissue-specific effects on uptake of 99mTc-sestamibi by breast lesions: a targeted analysis of false scintigraphic diagnoses. J Nucl Med 45: 1822– 1828

    PubMed  Google Scholar 

  140. Torabi M, Aquino SL, Harisinghani M (2004) Current concepts in lymph node imaging. J Nucl Med 45: 1509–1518

    PubMed  Google Scholar 

  141. Tran BN, Grigsby PW, Dehdashti F et al. (2003) Occult supraclavicular lymph node metastasis identified by FDG-PET in patients with carcinoma of the uterine cervix. Gynecol Oncol 90: 572– 576

    PubMed  Google Scholar 

  142. Tsai Ch, Tsai ChS, Ng K et al. (2003) The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynecological cancers. Eur J Nucl Med 30: 1674– 1683

    Google Scholar 

  143. Turlakow A, Yeung HW, Salmon AS et al. (2003) Peritoneal carcinomatosis: role of 18F-FDG PET. J Nucl Med 44: 1407–1412

    PubMed  Google Scholar 

  144. Utech CI, Young CS, Winter PF (1996) Prospective evaluation of fluorine-18 flurododeoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 23: 1588–1593

    PubMed  CAS  Google Scholar 

  145. Veronesi U, Paganelli G, Galimberti V et al. (1997) Sentinel node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph nodes. Lancet 349: 1864–1887

    PubMed  CAS  Google Scholar 

  146. Vogl T (1995) MR-Angiographie und MR-Tomographie des Gefäßsystems (Klinische Diagnostik). Springer, Berlin

    Google Scholar 

  147. Wahl RL (1998) Overview of the current status of PET in breast cancer imaging. Q J Nucl Med 42: 1–7

    PubMed  CAS  Google Scholar 

  148. Wahl RL, Hutchins GD, Cody RL, Mudgett EE (1991) Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 179: 765–770

    PubMed  CAS  Google Scholar 

  149. Yang D, Wong WH, Tansey W, Vargas K, Brown JA, Tilbury R, Broussard W, Kuang LR, Wallace S, Kim EE (1992) 18F Fluoro analog of Tamoxifen: radiosynthesis and imaging of estrogen receptors with PET. J Nucl Med 33: 985

    Google Scholar 

  150. Yen RF, Sun SS, Changlai SP, Kao A (2001) Whole-body positron emission tomography with 18F-fluoro-2-deoxyglucose for the detection of recurrent ovarian cancer. Anticancer Res 21: 3691– 94

    PubMed  CAS  Google Scholar 

  151. Yeh LS, Hung YC, Shen YY et al. (2002) Detecting paraaortic lymh node metastasis by positron emission tomography of 18F fluorodeoxyglucose in advanced cervical cancer with negative magnetic resonance imaging findings. Oncol Rep 9: 1289–1292

    PubMed  Google Scholar 

  152. Yen T, See L, Chang T et al. (2004) Defining the priority of using 18F-FDG PET for recurrent cervival cancer. J Nucl Med 45: 1632– 1639

    PubMed  Google Scholar 

  153. Yen T, See L, Lai C et al. (2008) Standardized uptake value in para-aortic lymphnodes is a significant prognostic factor in patients with primary advanced squamous cervical cancer. J Nucl Med Mol Imaging 35: 493

    Google Scholar 

  154. Yoshimura G, Sakurai T, Oura S et al. (1999) Evaluation of axillary lymph node status in breast cancer with MRI. Breast Cancer 6: 249–258

    PubMed  Google Scholar 

  155. Zangheri B, Messa Ch, Picchio M et al. (2004) PET/CT and breast cancer. Eur J Nucl Med Mol Imaging 31 (Suppl 1): 135–142

    Google Scholar 

  156. Zimny M, Schröder W, Wolters S, Cremerius U, Rath W, Büll U (1997) 18F-Fluordeoxyglukose PET beim Ovarialkarzinom: Methodik und erste Ergebnisse. Nuklearmedizin 36: 228–233

    PubMed  CAS  Google Scholar 

  157. Zimny M, Siggelkow W (2003) Positron emission tomography scanning in gynecological and breast cancers. Curr Opin Obstet Gynecol 15: 69–75

    PubMed  Google Scholar 

  158. Zoller M, Kohlfuerst S, Igere I, et al. (2007) Combined PET/CT in the follow-up of differentiated thyroid carcinoma: What is the impact of each modality? Eur J Nucl Med Mol Imaging 34: 487– 495

    PubMed  Google Scholar 

  159. Zylka-Menhorn V (2007) Rückgang der Brustkrebsinzidenz: »Eine Kausalität lässt sich aus den Daten nicht sicher ableiten.« Dt Ärztebl 104: C16–C17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohnike, W., Hör, G., Schelbert, H. (2011). Gynäkologie. In: PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17805-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17805-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17804-7

  • Online ISBN: 978-3-642-17805-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics