Advertisement

Abstract

With the aid of the vorticity transport equation it is shown that in inviscid, incompressible, axially symmetric vortex flow the axial vorticity component near the axis of the vortex approaches zero if the axial velocity component approaches a stagnation point, and vice versa, the axial vorticity component is increased, if the axial flow is accelerated. This result, obtained in earlier investigations by simplifying the momentum equations for the neighbourhood of the axis of the vortex, is already contained in the vorticity transport equation as formulated by von Helmholtz in 1858. In laminar flow, with viscous forces acting near the stagnation point, the angular velocity does not necessarily vanish with the axial velocity component. These questions are discussed in the following.

Keywords

Stagnation Point Draft Tube Vortex Breakdown Delta Wing Axial Velocity Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. reine angew. Math. 55, 25–55 (1858)zbMATHGoogle Scholar
  2. 2.
    Shukowski, N.J.: Theoretische Grundlagen der Luftfahrt. GTI, Moscow (1925)Google Scholar
  3. 3.
    Fromm, J.E.: A method for computing nonsteady, incompressible viscous fluid flows, LA-2910, UC-32, Mathematics and Computers, TID-4500, 21th edn. (1963)Google Scholar
  4. 4.
    Peckham, D.H., Atkinson, S.A.: Preliminary results of low speed wind tunnel tests on a Gothic wing of aspect ratio 1.0., Aero. Res. Counc. CP 508 (1957)Google Scholar
  5. 5.
    Krause, E.: A contribution to the problem of vortex breakdown. Comput. Fluids 13, 375–381 (1985)zbMATHCrossRefGoogle Scholar
  6. 6.
    Krause, E., Gersten, K. (eds.): Dynamics of Slender Vortices, Proceedings of the IUTAM Symposium held in Aachen, Germany, August 31-September 3. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  7. 7.
    Thomer, O., Klaas, M., SchrÃűder, W., Krause, E.: Oblique shock vortex interaction over a wedge. In: Bathe, K.J. (ed.) Proceedings of the MIT Conference on Computational Fluid and Solid Mechanics, Computational Fluid and Solid Mechanics 2003, June 17-20, pp. 1156–1159. Elsevier, Amsterdam (2003)Google Scholar
  8. 8.
    Sarpkaya, T.: Vortex breakdown in swirling conical flows. AIAA J. 9, 1792–1799 (1971)CrossRefGoogle Scholar
  9. 9.
    Hall, M.G.: Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195–218 (1972)CrossRefGoogle Scholar
  10. 10.
    Leibovich, S.: The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221–245 (1978)CrossRefGoogle Scholar
  11. 11.
    Krause, E., Gersten, K. (eds.): Dynamics of Slender Vortices, Proceedings of the IUTAM Symposium held in Aachen, Germany, August 31-September 3. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  12. 12.
    Shi, X.: Numerische Simulation des Aufplatzens von Wirbeln, Diss. RWTH Aachen (1983)Google Scholar
  13. 13.
    Kiesewetter, F., Konle, M., Sattelmayer, T.: Analysis of combustion induced vortex breakdown driven flame flashback in a premix burner with cylindrical mixing zone. J. Eng. Gas Turbines Power 129, 929–936 (2007)CrossRefGoogle Scholar
  14. 14.
    Göde, E., Ruprecht, A., Lippold, F.: On the part load vortex in draft tubes of hydro electric power plants. In: Krause, E., Shokin, Y.I., Resch, M., Shokina, N. (eds.) Computational Science and High Performance Computing II. The 2nd Russian-German Advanced Research Workshop, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), Stuttgart, Germany, March 14-16, vol. 91, pp. 217–231 (2006)Google Scholar
  15. 15.
    Widenhorn, A., Noll, R., Aigner, M.: Numerical characterization of the reacting flow in a swirled gasturbine model. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds.) High Performance Computing in Science and Engineering 2008, Transactions of the High Performance Computing Center Stuttgart, pp. 365–380 (2009)Google Scholar
  16. 16.
    Schlechtriem, S., Lötzerich, M.: Breakdown of tip leakage vortices in compressors at flow conditions close to stall. In: Proceedings of IGTI-ASME Conference, Orlando, Florida, USA (June 1997)Google Scholar
  17. 17.
    Kandil, O.A., Massey, S.J., Sheta, E.F.: Structural dynamics/CFD Interaction for computation of vertical tail buffet. In: Proceedings of International Forum on Aeroelasticty and Structural Dynamics, Royal Aeronautical Society, Manchester, U. K., also published in Royal Aeron. J., vol. 100, pp. 297–303 (1996)Google Scholar
  18. 18.
    Krause, E.: Axial flow in slender vortices. J. Eng. Thermophys 11(3), 229–242 (2002)MathSciNetGoogle Scholar
  19. 19.
    Klass, M.: Experimental investigation of shock vortex interaction, Diss. Aerodyn. Inst., RWTH Aachen (2002)Google Scholar
  20. 20.
    Krause, E.: On the analogy to the area-velocity relation of gasdynamics in slender vortices. Acta Mech. 201, 23–30 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Krause, E.: Breakdown revisited. In: Bathe, K.J. (ed.) Proceedings of the Third MIT Conference on Computational Fluid and Solid Mechanics, Computational Fluid and Solid Mechanics 2005, June 14-17, pp. 706–709. Elsevier, Amsterdam (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Egon Krause
    • 1
  1. 1.Aerodynamisches InstitutRWTH AachenAachenGermany

Personalised recommendations