Advertisement

Parallel Lattice-Boltzmann Simulation of Transitional Flow on Non-uniform Grids

  • Maik Stiebler
  • Sören Freudiger
  • Manfred Krafczyk
  • Martin Geier
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 115)

Abstract

Transitional flows are difficult to address by Reynolds Averaged Navier-Stokes (RANS) simulations as the spectrum is typically not fully developed. In this work the suitability of the lattice Boltzmann method is evaluated for the simulation of transitional flows. Special measures are taken to reduce the computational cost without sacrificing the accuracy of the method. A large eddy simulation turbulence model is employed to allow efficient simulation of the resolved flow structures on relatively coarse computational meshes. In the vicinity of solid walls, where the flow is governed by the presence of a thin boundary layer, local grid-refinement is employed in order to capture the fine structures of the flow. The lattice Boltzmann code is run on an Opteron cluster. In the considered test case, the pressure distribution and the drag force on a sphere are computed in the Reynolds number range 1000 to 10000 and a parallel efficiency of 80% is obtained.

Keywords

Large Eddy Simulation Reynolds Average Navier Stoke Lattice Boltzmann Method Turbulent Viscosity Collision Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a lattice-Boltzmann fluid with boundaries. Phys. Fluids 13, 3452–3459 (2002)CrossRefGoogle Scholar
  2. 2.
    Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)Google Scholar
  3. 3.
    Constantinescu, G., Squires, K.: LES and DES investigations of turbulent flow over a sphere at Re=10000. Flow Turbul. Combust. 70(1-4), 267–298 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Crouse, B., Rank, E., Krafczyk, M., Tölke, J.: A LB-based approach for adaptive flow simulations. Int. J. Mod. Phys. B 17(1+2), 109–112 (2003)CrossRefGoogle Scholar
  5. 5.
    Freudiger, S.: Entwicklung eines parallelen, adaptiven, komponentenbasierten Strömungskerns für hierarchische Gitter auf Basis des Lattice-Boltzmann-Verfahrens, Ph.D. thesis, iRMB, TU Braunschweig (2009)Google Scholar
  6. 6.
    Filippova, O., Hänel, D.: Grid refinement for lattice-BGK models. J. Comp. Phys. 147, 219–228 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Comput. Fluids 35, 888–897 (2006)zbMATHCrossRefGoogle Scholar
  8. 8.
    D’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437–451 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Karypis, G., Kumar, V.: METIS - A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices - Version 4.0. (1998), http://glaros.dtc.umn.edu/gkhome/views/metis (last access January 21, 2009)
  10. 10.
    Krafczyk, M., Tölke, J., Luo, L.-S.: Large-eddy simulations with a multiple-relaxation-time LBE model. Int. J. Mod. Phys. B 17(1/2), 33–39 (2003)CrossRefGoogle Scholar
  11. 11.
    Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Review E 61, 6546–6562 (2000)Google Scholar
  12. 12.
    Mei, R., Yu, D., Shyy, W., Luo, L.-S.: Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Review E 65(4), 41203 (2002)CrossRefGoogle Scholar
  13. 13.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)zbMATHCrossRefGoogle Scholar
  14. 14.
    Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Rheinländer, M.: A consistent grid coupling method for Lattice-Boltzmann schemes. J. Statist. Phys. 121, 49–74 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Sagaut, P.: Large Eddy Simulation for incompressible flows: an introduction. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  17. 17.
    Teixeira, C.M.: Incorporating turbulence models into the lattice-Boltzmann method. Int. J. Mod. Phys. C 9(8), 1159–1175 (1998)CrossRefGoogle Scholar
  18. 18.
    Van Driest, E.R.: On turbulent flow near a wall. J. Aero. Sci. 23, 1007–1011 (1956)Google Scholar
  19. 19.
    Yu, D., Mei, R., Shyy, W.: A multi-block lattice Boltzmann method for viscous fluid flows. International J. Numer. Meth. Fluids 39(2), 99–120 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maik Stiebler
    • 1
  • Sören Freudiger
    • 1
  • Manfred Krafczyk
    • 1
  • Martin Geier
    • 1
  1. 1.Institute for Computational Modeling in Civil EngineeringTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations