Skip to main content

Hierarchy Analysis and Reduction of Reacting Flow Systems

  • Conference paper

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 115))

Abstract

The qualitative system analysis and model reduction for reacting flows has gained an increasing interest during the last years. Nowadays, simulations based on sophisticated algorithms implemented on powerful workstations turn out to be a prevailing tool of the system analysis. However, modelling of realistic systems of technical importance leads to an extreme growth of mathematical models both in complexity and in dimension, i.e. they become not treatable even by modern computational facilities. Recently, the concept of invariant, slow/fast -, attractive and stable manifolds, which appear in the system state space as a manifestation of a restricted number of degrees of freedom exhibiting by the system, has proven to be an efficient tool of system analysis and model reduction. In the current work questions about the specific low-dimensional manifolds’ identification, the analysis of their properties, their approximation and the application to model reduction of complex reacting flow systems is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, J., Bykov, V., Maas, U.: Proc. of European Conference on Computational Fluid Dynamics, ECCOMAS CFD (2006)

    Google Scholar 

  2. Bird, R., Stewart, W., Lightfoot, E.: Transport Phenomena. John Wiley and Sons, New York (1960)

    Google Scholar 

  3. Bodenstein, M., Lind, S.C.: Z. Phys. Chem. 27, 168–175 (1906)

    Google Scholar 

  4. Bowen, J.R., Acrivos, A., Oppenheim, A.K.: Chem. Eng. Sci. 18, 177–188 (1963)

    Article  Google Scholar 

  5. Bykov, V., Goldfarb, I., Gol’dshtein, V.: J. Physics: Conference Series 22, 1–29 (2005)

    Article  Google Scholar 

  6. Bykov, V., Goldfarb, I., Gol’dshtein, V.: J. Physics: Conference Series 55, 28–44 (2006)

    Article  Google Scholar 

  7. Bykov, V., Goldfarb, I., Gol’dshtein, V., Maas, U.: IMA J. Appl. Math. 71(3), 359–382 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bykov, V., Gol’dshtein, V.: J. Physics: Conference Series 138, 12003 (2008)

    Article  Google Scholar 

  9. Bykov, V., Gol’dshtein, V., Maas, U.: Combust. Theory Model. 12(2), 389–405 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bykov, V., Maas, U.: Proc. Comb. Inst. 31, 465–472 (2007)

    Article  Google Scholar 

  11. Bykov, V., Maas, U.: Proc. Comb. Inst. 32(1), 561–568 (2009)

    Article  Google Scholar 

  12. Chevalier, C., Pitz, W.J., Warnatz, J., Westbrook, C.K.: Proc. Comb. Inst. 24, 93–101 (1992)

    Google Scholar 

  13. Ern, A., Giovangigli, V.: Multicomponent Transport Algorithms. In: Lecture Notes in Physics, vol. 24. Springer, Berlin (1994)

    Google Scholar 

  14. Fenichel, N.: J. Diff. Equat. 31, 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fraser, S.J.: J. Chem. Phys. 88, 4732–4738 (1988)

    Article  Google Scholar 

  16. Gol’dshtein, V., Sobolev, V.: In: Gindikin, S.G. (ed.) Singularity Theory and Some Problems of Functional Analysis, vol. 153(2), pp. 73–92. American Mathematical Society, Translations, Providence (1992)

    Google Scholar 

  17. Golub, G.H., van Loan, C.F.: Matrix Computation. The Hopkins University Press, Baltimore (1989)

    Google Scholar 

  18. Gorban, A.N., Karlin, I.V.: Chem. Eng. Sci. 58, 4751–4768 (2003)

    Article  Google Scholar 

  19. Gorban, A.N., Karlin, I.V., Zinovyev, A.Y.: Physica A 333, 106–154 (2004)

    Article  Google Scholar 

  20. Gorban, A.N., Karlin, I.V., Zinovyev, A.Y.: Physics Reports 396(4-6), 197–403 (2004)

    Article  MathSciNet  Google Scholar 

  21. Green, W.H., Barton, P.I., Bhattacharjee, B., et al.: Ind. Eng. Chem. Res. 40(23), 5362–5370 (2001)

    Article  Google Scholar 

  22. Griffiths, J.F.: Prog. Energy Combust. Sci. 21, 25–107 (1995)

    Article  Google Scholar 

  23. Hirschfelder, J., Curtiss, C.: Molecular Theory of Gases and Liquids. John Wiley & Sons, Inc.S, New York (1964)

    Google Scholar 

  24. Kaper, H.G., Kaper, T.J.: Argonne National Lab, preprint ANL/MCS-P912-1001 (2001)

    Google Scholar 

  25. Lam, S.H.: Combust. Sci. Tech. 179, 767–786 (2007)

    Article  Google Scholar 

  26. Lam, S.H., Goussis, D.M.: Int. J. Chem. Kinetics 26, 461–486 (1994)

    Article  Google Scholar 

  27. Maas, U.: Mathematische Modellierung instationaerer Verbrennungsprozesse unter Verwenung detaillieter Reaktionsmechanismen. PhD thesis, Naturwissenschaftlich-Mathematische Gesamtfakultät, Ruprecht-Karls-Universitaet Heidelberg (1988)

    Google Scholar 

  28. Maas, U.: Appl. Math. 3, 249–266 (1995)

    MathSciNet  Google Scholar 

  29. Maas, U.: Comput. Visualiz. Sci. 1, 69–82 (1998)

    Article  MATH  Google Scholar 

  30. Maas, U., Bykov, V., Rybakov, A., Stauch, R.: Hierarchical Modelling of Combustion Processes. In: High Performance Computing on Vector Systems 2008. Springer, Heidelberg (2009)

    Google Scholar 

  31. Maas, U., Pope, S.B.: Combust. Flame 88, 239–264 (1992)

    Article  Google Scholar 

  32. Maas, U., Warnatz, J.: Combust. Flame 74, 53–69 (1988)

    Article  Google Scholar 

  33. Miyoshi, KUCRS software library: version (May 2005) beta, available from the author http://www.frad.t.u-tokyo.ac.jp/~iyoshi/KUCRS/

  34. Moore, E.H.: Bulletin Amer. Math. Soc. 26, 394–395 (1920)

    Google Scholar 

  35. Nafe, J., Maas, U.: Combust Theory Model 6(4), 697–709 (2002)

    Article  MATH  Google Scholar 

  36. Okino, M.S., Mavrovouniotis, M.L.: Chem. Rev. 98(2), 391–408 (1998)

    Article  Google Scholar 

  37. Penrose, R.: Proc. Cambridge Philos. Soc. 51, 406–413 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mauss, F., Peters, N.: In: Peters, N., Rogg, B. (eds.) Reduced Kinetic Mechanisms for Applications in Combustion Systems. Springer Lecture Notes in Physics, vol. 15, pp. 58–75. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  39. Ren, Z., Pope, S.B.: Combust. Flame 147(4), 243–261 (2006)

    Article  Google Scholar 

  40. Ren, Z., Pope, S.B.: Combust. Theory Model. 11(5), 715–739 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ren, Z., Pope, S.B., Vladimirsky, A., Guckenheimer, J.M.: J. Chem. Physics 124, 114111 (2006)

    Article  Google Scholar 

  42. Ren, Z., Pope, S.B., Vladimirsky, A., Guckenheimer, J.M.: Proc. Comb. Inst. 31, 473–481 (2006)

    Article  Google Scholar 

  43. Rhodes, C., Morari, M., Wiggins, S.: Chaos 9, 108–123 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Roussel, M.R., Fraser, S.J.: Chaos 11, 196–206 (2001)

    Article  MATH  Google Scholar 

  45. Singer, M.A., Pope, S.B., Najm, H.N.: Combust. Theory Model. 10(2), 199–217 (2006)

    Article  MathSciNet  Google Scholar 

  46. Strygin, B.B., Sobolev, V.A.: Decomposition of Motions by the Integral Manifolds Method. Nauka, Moscow (1988) (in Russian)

    Google Scholar 

  47. Tomlin, A.S., Turanyi, T., Pilling, M.J.: In: Pilling, M.J. (ed.) Comprehensive Chemical Kinetics. Low-temperature Combustion and Autoignition, vol. 35, Elsevier, Amsterdam (1997)

    Google Scholar 

  48. Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 4 edn. Springer, Heidelberg (2004)

    Google Scholar 

  49. Williams, F.A.: Combustion Theory, 2nd edn. Princeton University Press, Princeton (1994)

    Google Scholar 

  50. Zagaris, A., Kaper, H.G., Kaper, T.J.: Multiscale Model. Simul. 2, 613–638 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. http://www.ca.sandia.gov/chemkin/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bykov, V., Maas, U. (2011). Hierarchy Analysis and Reduction of Reacting Flow Systems. In: Krause, E., Shokin, Y., Resch, M., Kröner, D., Shokina, N. (eds) Computational Science and High Performance Computing IV. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17770-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17770-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17769-9

  • Online ISBN: 978-3-642-17770-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics