Social Dynamics in Conferences: Analyses of Data from the Live Social Semantics Application

  • Alain Barrat
  • Ciro Cattuto
  • Martin Szomszor
  • Wouter Van den Broeck
  • Harith Alani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6497)


Popularity and spread of online social networking in recent years has given a great momentum to the study of dynamics and patterns of social interactions. However, these studies have often been confined to the online world, neglecting its interdependencies with the offline world. This is mainly due to the lack of real data that spans across this divide. The Live Social Semantics application is a novel platform that dissolves this divide, by collecting and integrating data about people from (a) their online social networks and tagging activities from popular social networking sites, (b) their publications and co-authorship networks from semantic repositories, and (c) their real-world face-to-face contacts with other attendees collected via a network of wearable active sensors. This paper investigates the data collected by this application during its deployment at three major conferences, where it was used by more than 400 people. Our analyses show the robustness of the patterns of contacts at various conferences, and the influence of various personal properties (e.g. seniority, conference attendance) on social networking patterns.


Online Social Network Contact Event Conference Attendee Online Social Networking Site Social Networking System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alani, H., Szomszor, M., Cattuto, C., den Broeck, W.V., Correndo, G., Barrat, A.: Live social semantics. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 698–714. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Barrat, A., Cattuto, C., Colizza, V., Pinton, J.-F., den Broeck, W.V., Vespignani, A.: High resolution dynamical mapping of social interactions with active RFID (2008),
  3. 3.
    Cattuto, C., den Broeck, W.V., Barrat, A., Colizza, V., Pinton, J.-F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. In: PLoS ONE (2010)Google Scholar
  4. 4.
    den Broeck, W.V., Cattuto, C., Barrat, A., Szomszor, M., Correndo, G., Alani, H.: The live social semantics application: a platform for integrating face-to-face proximity with on-line social networking. In: Workshop on Communication, Collaboration and Social Networking in Pervasive Computing Environments (PerCol 2010), IEEE Int. Conf. on Pervasive Computing and Communications (PerCom), Mannheim, Germany (2010)Google Scholar
  5. 5.
    Eagle, N., (Sandy) Pentland, A.: Reality mining: sensing complex social systems. Personal Ubiquitous Comput. 10(4), 255–268 (2006)Google Scholar
  6. 6.
    Fischer, C.S.: To dwell among friends. University Chicago Press, Chicago (1982)Google Scholar
  7. 7.
    Garca-Silva, A., Szomszor, M., Alani, H., Corcho, O.: Preliminary results in tag disambiguation using dbpedia. In: Knowledge Capture (K-Cap 2009) - Workshop on Collective Knowledge Capturing and Representation - CKCaR 2009, CA, USA (2009)Google Scholar
  8. 8.
    Golder, S., Wilkinson, D.M., Huberman, B.A.: Rhythms of social interaction: Messaging within a massive online network. In: Communities and Technologies 2007: Proceedings of the Third Communities and Technologies Conference, Michigan State University (2007)Google Scholar
  9. 9.
    Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Pocket switched networks and human mobility in conference environments. In: WDTN 2005: Proc. 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking. ACM, New York (2005)Google Scholar
  10. 10.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., den Broeck, W.V.: What’s in a crowd? analysis of face-to-face behavioral networks. arXiv:1006.1260 (2010)Google Scholar
  11. 11.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proc. 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Phil. (2006)Google Scholar
  12. 12.
    Marlow, C., Naaman, M., boyd, d., Davis, M.: Ht 2006, tagging paper, taxonomy, flickr, academic article, to read. In: Proc. 17th ACM Conference on Hypertext and Hypermedia (HT). ACM Press, New York (2006)Google Scholar
  13. 13.
    McPherson, M., Smith-Lovin, L., Cook, J.: Birds of a feather: Homophily in social networks. Annual Review of Sociology 27, 415–444 (2001)CrossRefGoogle Scholar
  14. 14.
    Monge, P.R., Contractor, N.S.: Theories of Communication Networks. Oxford University Press, Oxford (2003)Google Scholar
  15. 15.
    Nishimura, T., Matsuo, Y., Hamasaki, M., Fujimura, N., Ishida, K., Hope, T., Nakamura, Y.: Ubiquitous community support system for ubicomp 2005. demo at ubicomp 2005, tokyo (2005)Google Scholar
  16. 16.
    Scherrer, A., Borgnat, P., Fleury, E., Guillaume, J.-L., Robardet, C.: Description and simulation of dynamic mobility networks. Comput. Netw. 52(15), 2842–2858 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Szell, M., Lambiotte, R., Thurner, S.: Trade, conflict and sentiments: multi-relational organization of large-scale social networks (2010), arXiv:1003.5137Google Scholar
  18. 18.
    Szomszor, M., Cantador, I., Alani, H.: Correlating user profiles from multiple folksonomies. In: Proc. Int. Conf. Hypertext (HT 2008), Pittsburgh, PA, USA (2008)Google Scholar
  19. 19.
    Szomszor, M., Cattuto, C., den Broeck, W.V., Barrat, A., Alani, H.: Semantics, sensors, and the social web: The live social semantics experiments. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088. Springer, Heidelberg (2010)Google Scholar
  20. 20.
    Thibodeau, P.: IBM uses RFID to track conference attendees (2007),
  21. 21.
    Wasserman, A., Faust, K.: Social Network Analysis: Methods and applications. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Wu, L., Waber, B., Aral, S., Brynjolfsson, E., Pentland, S.: Mining face-to-face interaction networks using sociometric badges: Evidence predicting productivity in it configuration. In: The 2008 Winter Conference on Business Intelligence, University of Utah (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alain Barrat
    • 1
    • 2
  • Ciro Cattuto
    • 2
  • Martin Szomszor
    • 3
  • Wouter Van den Broeck
    • 2
  • Harith Alani
    • 4
  1. 1.Centre de Physique Théorique (CNRS UMR 6207)MarseilleFrance
  2. 2.Complex Networks and Systems GroupInstitute for Scientific Interchange (ISI) FoundationTurinItaly
  3. 3.City eHealth Research CentreCity UniversityUK
  4. 4.Knowledge Media instituteOpen UniversityUK

Personalised recommendations