Using SPARQL to Test for Lattices: Application to Quality Assurance in Biomedical Ontologies

  • Guo-Qiang Zhang
  • Olivier Bodenreider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6497)


We present a scalable, SPARQL-based computational pipeline for testing the lattice-theoretic properties of partial orders represented as RDF triples. The use case for this work is quality assurance in biomedical ontologies, one desirable property of which is conformance to lattice structures. At the core of our pipeline is the algorithm called NuMi, for detecting the Number of Minimal upper bounds of any pair of elements in a given finite partial order. Our technical contribution is the coding of NuMi completely in SPARQL. To show its scalability, we applied NuMi to the entirety of SNOMED CT, the largest clinical ontology (over 300,000 conepts). Our experimental results have been groundbreaking: for the first time, all non-lattice pairs in SNOMED CT have been identified exhaustively from 34 million candidate pairs using over 2.5 billion queries issued to Virtuoso. The percentage of non-lattice pairs ranges from 0 to 1.66 among the 19 SNOMED CT hierarchies. These non-lattice pairs represent target areas for focused curation by domain experts. RDF, SPARQL and related tooling provide an efficient platform for implementing lattice algorithms on large data structures.


Resource Description Framework Probe Pair Formal Concept Analysis SPARQL Query Biomedical Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Donnelly, K.: SNOMED-CT: The advanced terminology and coding system for eHealth. Stud. Health Technol. Inform. 121, 279–290 (2006)Google Scholar
  2. 2.
  3. 3.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
  5. 5.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, D.J., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    International Health Terminology Standard Development Organization (IHTSDO),
  7. 7.
    Jiang, G., Chute, C.G.: Auditing the semantic completeness of SNOMED CT using formal concept analysis. J. Am Med. Inform. Assoc. 16(1), 89–102 (2009)CrossRefGoogle Scholar
  8. 8.
    Joslyn, C.: Poset Ontologies and Concept Lattices as Semantic Hierarchies. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 287–302. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3), 189–216 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Priss, U.: Formal Concept Analysis as a Tool for Linguistic Data Exploration. In: Hitzler, P., Scharfe, H. (eds.) Conceptual Structures in Practice. Chapman & Hall/CRC Studies in Informatics Series, pp. 177–198 (2009)Google Scholar
  12. 12.
  13. 13.
  14. 14.
    Suntisrivaraporn, B., Baader, F., Schulz, S., Spackman, K.: Replacing SEP-Triplets in SNOMED CT using tractable description logic operators. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 287–291. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Troy, A., Zhang, G.Q., Tian, Y.: Faster concept analysis. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 206–219. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Wang, Y., Halper, M., Min, H., Perl, Y., Chen, Y., Spackman, K.A.: Structural methodologies for auditing SNOMED. J. Biomed. Inform. 40(5), 561–581 (2007)CrossRefGoogle Scholar
  18. 18.
    Wei, D., Bodenreider, O.: Using the Abstraction Network in complement to Description Logics for quality assurance in biomedical terminologies - A case study in SNOMED CT Medinfo 2010 (in press, 2010)Google Scholar
  19. 19.
    Zhang G.Q and Bodenreider O. Large-scale, exhaustive lattice-based structural auditing of SNOMED CT. In: American Medical Informatics Association (AMIA) Fall 2010 Symposium (in press, 2010)Google Scholar
  20. 20.
    Zhang, G.Q.: Logic of Domains. Birkhäuser, Basel (1991)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, G.Q.: Quasi-prime algebraic domains. Theoretical Computer Science 155, 221–264 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhu, X., Wei, J.W., Baorto, D., Weng, C., Cimino, J.: A review of auditing methods applied to the content of controlled biomedical terminologies. J. Biomedical Informatics 42, 412–425 (2009)CrossRefGoogle Scholar
  23. 23.
    Zweigenbaum, P., Bachimont, B., Bouaud, J., Charlet, J., Boisvieux, J.F.: Issues in the structuring and acquisition of an ontology for medical language understanding. Methods Inf. Med. 34(1-2), 15–24 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guo-Qiang Zhang
    • 1
  • Olivier Bodenreider
    • 2
  1. 1.Case Western Reserve UniversityClevelandUSA
  2. 2.National Library of MedicineBethesdaUSA

Personalised recommendations