dbrec — Music Recommendations Using DBpedia

  • Alexandre Passant
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6497)


This paper describes the theoretical background and the implementation of dbrec, a music recommendation system built on top of DBpedia, offering recommendations for more than 39,000 bands and solo artists. We discuss the various challenges and lessons learnt while building it, providing relevant insights for people developing applications consuming Linked Data. Furthermore, we provide a user-centric evaluation of the system, notably by comparing it to


Semantic Web Applications Linked Data Recommendation Systems Semantic Distance DBpedia 


  1. 1.
    Berners-Lee, T.: Linked Data. Design Issues for the World Wide Web, World Wide Web Consortium (2006),
  2. 2.
    Bizer, C., Heath, T., Ayers, D., Raimond, Y.: Interlinking Open Data on the Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Budanitsky, E., Hirst, G.: Semantic distance in wordnet: An experimental, application-oriented evaluation of five measures. In: Proceedings of the NAACL 2001 Workshop on WordNet and Other Lexical Resources (2001)Google Scholar
  4. 4.
    Celma, Ò., Herrera, P.: A new approach to evaluating novel recommendations. In: RecSys 2008: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 179–186. ACM, New York (2008)CrossRefGoogle Scholar
  5. 5.
    Corlosquet, S., Delbru, R., Clark, T., Polleres, A., Decker, S.: Produce and Consume Linked Data with Drupal! In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 763–778. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin (2007)zbMATHGoogle Scholar
  7. 7.
    Hausenblas, M.: Exploiting linked data to build web applications. IEEE Internet Computing 13(4), 68–73 (2009)CrossRefGoogle Scholar
  8. 8.
    Hausenblas, M., Halb, W., Raimond, Y., Feigenbaum, L., Ayers, D.: SCOVO: Using Statistics on the Web of Data. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 708–722. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Heitmann, B., Hayes, C.: Using Linked Data to build open, collaborative recommender systems. In: Linked AI: AAAI Spring Symposium “Linked Data Meets Artificial Intelligence”, AIII (2010)Google Scholar
  10. 10.
    Heitmann, B., Kinsella, S., Hayes, C., Decker, S.: Implementing Semantic Web applications: reference architecture and challenges. In: Proceedings of the 5th Workshop on Semantic Web Enabled Software Engineering. CEUR Workshop Proceedings, vol. 524, (2009)Google Scholar
  11. 11.
    Hendler, J.A., Golbeck, J.: Metcalfe’s law, Web 2.0, and the Semantic Web. Journal of Web Semantics 6(1), 14–20 (2008)CrossRefGoogle Scholar
  12. 12.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53 (2004)CrossRefGoogle Scholar
  13. 13.
    Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the Pedantic Web. In: 3rd International Workshop on Linked Data on the Web (LDOW2010) at WWW 2010. CEUR Workshop Proceedings, vol. 628, (2010)Google Scholar
  14. 14.
    Jacobson, K., Raimond, Y., Sandler, M.: An Ecosystem for Transparent Music Similarity in an Open World. In: International Symposium on Music Information Retrieval (2009)Google Scholar
  15. 15.
    Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: KDD 2002: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 538–543. ACM, New York (2002)Google Scholar
  16. 16.
    McSherry, D.: Explanation in Recommender Systems. Artificial Intelligence Review 24(2), 179–197 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Middleton, S.E., Alani, H., De Roure, D.: Exploiting Synergy Between Ontologies and Recommender Systems. CoRR, cs.LG/0204012 (2002)Google Scholar
  18. 18.
    Celma, Ò., Ramirez, M., Herrera, P.: Foafing the music: A music recommendation system based on RSS feeds and user preference. In: Proceedings of the 6th International Conference on Music Information Retrieval, ISMIR (2005)Google Scholar
  19. 19.
    Passant, A.: Measuring Semantic Distance on Linking Data and Using it for Resources Recommendations. In: Linked AI: AAAI Spring Symposium “Linked Data Meets Artificial Intelligence”, AIII (2010)Google Scholar
  20. 20.
    Passant, A., Raimond, Y.: Combining Social Music and Semantic Web for Music-related Recommender Systems. In: Proceedings of the First Workshop on Social Data on the Web (SDoW2008). CEUR Workshop Proceedings, vol. 405, (2008)Google Scholar
  21. 21.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernetics 19, 17–30 (1989)CrossRefGoogle Scholar
  22. 22.
    Raimond, Y., Abdallah, S., Sandler, M., Giasson, F.: The Music Ontology. In: International Conference on Music Information Retrieval, pp. 417–422 (September 2007)Google Scholar
  23. 23.
    Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: WWW 2008: Proceeding of the 17th International Conference on World Wide Web, pp. 595–604. ACM, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexandre Passant
    • 1
  1. 1.Digital Enterprise Research InstituteNational University of IrelandGalwayIreland

Personalised recommendations