Advertisement

Query Strategy for Sequential Ontology Debugging

  • Kostyantyn Shchekotykhin
  • Gerhard Friedrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)

Abstract

Debugging is an important prerequisite for the wide-spread application of ontologies, especially in areas that rely upon everyday users to create and maintain knowledge bases, such as the Semantic Web. Most recent approaches use diagnosis methods to identify sources of inconsistency. However, in most debugging cases these methods return many alternative diagnoses, thus placing the burden of fault localization on the user. This paper demonstrates how the target diagnosis can be identified by performing a sequence of observations, that is, by querying an oracle about entailments of the target ontology. We exploit probabilities of typical user errors to formulate information theoretic concepts for query selection. Our evaluation showed that the suggested method reduces the number of required observations compared to myopic strategies.

Keywords

Fault Pattern Fault Probability Probable Diagnosis Logical Sentence Query Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ceraso, J., Provitera, A.: Sources of error in syllogistic reasoning. Cognitive Psychology 2(4), 400–410 (1971)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press, New York (2007)Google Scholar
  3. 3.
    Friedrich, G., Shchekotykhin, K.: A General Diagnosis Method for Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 232–246. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Haarslev, V., Müller, R.: RACER System Description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Junker, U.: QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained Problems. In: Association for the Advancement of Artificial Intelligence (AAAI 2004), pp. 167–172. AAAI, Menlo Park (2004)Google Scholar
  6. 6.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all Justifications of OWL DL Entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing Unsatisfiable Concepts in OWL Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 170–184. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130 (1987)CrossRefzbMATHGoogle Scholar
  9. 9.
    Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  10. 10.
    Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang, H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors & Common Patterns. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 63–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence 23, 57–95 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Roussey, C., Corcho, O., Vilches-Blázquez, L.M.: A catalogue of OWL ontology antipatterns. In: 5th International Conference On Knowledge Capture (K-CAP-2009), pp. 205–206. ACM, New York (2009)Google Scholar
  13. 13.
    Schlobach, S., Huang, Z., Cornet, R., Harmelen, F.: Debugging Incoherent Terminologies. Journal of Automated Reasoning 39(3), 317–349 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Settles, B.: Active Learning Literature Survey. Computer sciences technical report 1648, University of Wisconsin-Madison (2009)Google Scholar
  15. 15.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. Journal of Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kostyantyn Shchekotykhin
    • 1
  • Gerhard Friedrich
    • 1
  1. 1.Universitaet KlagenfurtKlagenfurtAustria

Personalised recommendations