Advertisement

Representing and Querying Validity Time in RDF and OWL: A Logic-Based Approach

  • Boris Motik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)

Abstract

RDF(S) and OWL 2 currently support only static ontologies. In practice, however, the truth of statements often changes with time, and Semantic Web applications often need to represent such changes and reason about them. In this paper we present a logic-based approach for representing validity time in RDF and OWL. Unlike the existing proposals, our approach is applicable to entailment relations that are not deterministic, such as the Direct Semantics or the RDF-Based Semantics of OWL 2. We also extend SPARQL to temporal RDF graphs and present a query evaluation algorithm. Finally, we present an optimization of our algorithm that is applicable to entailment relations characterized by a set of deterministic rules, such RDF(S) and OWL 2 RL/RDF entailment.

Keywords

Description Logic Query Language Group Pattern Validity Time Triple Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11), 832–843 (1983)CrossRefMATHGoogle Scholar
  2. 2.
    Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Annals of Mathematics and Artificial Intelligence 30(1-4), 171–210 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, Cambridge (August 2007)MATHGoogle Scholar
  4. 4.
    Chomicki, J.: Temporal Query Languages: A Survey. In: Proc. ICTL, pp. 506–534 (1994)Google Scholar
  5. 5.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Texts in Computer Science. Springer, Heidelberg (1996)CrossRefMATHGoogle Scholar
  6. 6.
    Gutiérrez, C., Hurtado, C.A., Mendelzon, A.O.: Foundations of Semantic Web Databases. In: Proc. PODS, pp. 95–106 (2004)Google Scholar
  7. 7.
    Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing Time into RDF. IEEE Transactions on Knowledge and Data Engineering 19(2), 207–218 (2007)CrossRefGoogle Scholar
  8. 8.
    Hayes, P.: RDF Semantics, W3C Recommendation (February 10, 2004)Google Scholar
  9. 9.
    Hurtado, C.A., Vaisman, A.A.: Reasoning with Temporal Constraints in RDF. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 164–178. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Milea, V., Frasincar, F., Kaymak, U.: Knowledge Engineering in a Temporal Semantic Web Context. In: Proc. ICWE, pp. 65–74 (2008)Google Scholar
  11. 11.
    Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language: Profiles. W3C Recommendation (October 27, 2009)Google Scholar
  12. 12.
    Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax, W3C Recommendation (October 27, 2009)Google Scholar
  13. 13.
    Patel-Schneider, P.F., Motik, B.: OWL 2 Web Ontology Language: Mapping to RDF Graphs, W3C Recommendation (October 27, 2009)Google Scholar
  14. 14.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Transactions on Database Systems 34(3) (2009)Google Scholar
  15. 15.
    Pugliese, A., Udrea, O., Subrahmanian, V.S.: Scaling RDF with Time. In: Proc. WWW, pp. 605–614 (2008)Google Scholar
  16. 16.
    Schneider, M.: OWL 2 Web Ontology Language: RDF-Based Semantics, W3C Recommendation (October 27, 2009)Google Scholar
  17. 17.
    Straccia, U., Lopes, N., Lukácsy, G., Polleres, A.: A General Framework for Representing and Reasoning with Annotated Semantic Web Data. In: Proc. AAAI (2010)Google Scholar
  18. 18.
    Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying of RDF Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Vila, L.: A Survey on Temporal Reasoning in Artificial Intelligence. AI Communications 7(1), 4–28 (1994)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Boris Motik
    • 1
  1. 1.Computing LaboratoryOxford UniversityOxfordUK

Personalised recommendations