Making Sense of Twitter

  • David Laniado
  • Peter Mika
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)


Twitter enjoys enormous popularity as a micro-blogging service largely due to its simplicity. On the downside, there is little organization to the Twitterverse and making sense of the stream of messages passing through the system has become a significant challenge for everyone involved. As a solution, Twitter users have adopted the convention of adding a hash at the beginning of a word to turn it into a hashtag. Hashtags have become the means in Twitter to create threads of conversation and to build communities around particular interests.

In this paper, we take a first look at whether hashtags behave as strong identifiers, and thus whether they could serve as identifiers for the Semantic Web. We introduce some metrics that can help identify hashtags that show the desirable characteristics of strong identifiers. We look at the various ways in which hashtags are used, and show through evaluation that our metrics can be applied to detect hashtags that represent real world entities.


Vector Space Model Twitter User Real World Entity Virtual Document Social Bookmark System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Al-Khalifa, H.S., Davis, H.C.: Exploring the value of folksonomies for creating semantic metadata. International Journal on Semantic Web and Information Systems (2007)Google Scholar
  2. 2.
    Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proc. of CHI (2007)Google Scholar
  3. 3.
    Angeletou, S.: Semantic enrichment of folksonomy tagspaces. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 889–894. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Benz, D., Grobelnik, M., Hotho, A., Jaschke, R., Mladenic, D., Servedio, V.D.P., Sizov, S., Szomszor, M.: Analyzing tag semantics across collaborative tagging systems. In: Dagstuhl Seminar 08391 - Working Group Summary (2008)Google Scholar
  5. 5.
    Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag relatedness in social bookmarking systems. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 615–631. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Chi, E.H., Mytkowicz, T.: Understanding the efficiency of social tagging systems using information theory. In: Proc. of HT (2008)Google Scholar
  7. 7.
    Farooq, U., Kannampallil, T.G., Song, Y., Ganoe, C.H., Carroll, J.M., Giles, L.: Evaluating tagging behavior in social bookmarking systems: metrics and design heuristics. In: Proc. of GROUP (2007)Google Scholar
  8. 8.
    Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J. Inf. Sci. (2006)Google Scholar
  9. 9.
    Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational tagging in twitter. In: Proc. of HT (2010)Google Scholar
  10. 10.
    Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter under the microscope. First Monday (2009)Google Scholar
  11. 11.
    Kipp, M.E.: @toread and cool: Subjective, affective and associative factors in tagging. In: Proc. of CAIS/ACSI (2008)Google Scholar
  12. 12.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proc. of WWW (2010)Google Scholar
  13. 13.
    Krner, C., Benz, D., Strohmaier, M., Hotho, A., Stumme, G.: Stop thinking, start tagging - tag semantics emerge from collaborative verbosity. In: Proc. of WWW (2010)Google Scholar
  14. 14.
    Letierce, J., Passant, A., Breslin, J., Decker, S.: Understanding how twitter is used to widely spread scientific messages. In: Proc. of WebSci. (2010)Google Scholar
  15. 15.
    Limpens, F., Monnin, A., Gandon, F., Laniado, D.: Speech acts meet tagging: NiceTag ontology. In: Proc. of I-SEMANTICS (2010)Google Scholar
  16. 16.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy, flickr, academic article, to read. In: Proc. of HT (2006)Google Scholar
  17. 17.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Passant, A., Hastrup, T., Bojars, U., Breslin, J.: Microblogging: A semantic web and distributed approach. In: Proc. of SFSW (2008)Google Scholar
  19. 19.
    Passant, A., Laublet, P.: Meaning of a tag: A collaborative approach to bridge the gap between tagging and linked data. In: Proc. of LDOW (2008)Google Scholar
  20. 20.
    Raghavan, V.V., Wong, S.K.M.: A critical analysis of vector space model for information retrieval. Journal of the American Society for Information Science (1986)Google Scholar
  21. 21.
    Salton, G.: Automatic Text Processing – The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)Google Scholar
  22. 22.
    Sen, S., Lam, S.K., Rashid, A.M., Cosley, D., Frankowski, D., Osterhouse, J., Harper, F.M., Riedl, J.: Tagging, communities, vocabulary, evolution. In: Proc. of CSCW (2006)Google Scholar
  23. 23.
    Wagner, C., Strohmaier, M.: The wisdom in tweetonomies: Acquiring latent conceptual structures from social awareness streams. In: Proc. of SemSearch (2010)Google Scholar
  24. 24.
    Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Proc. of WWW (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Laniado
    • 1
  • Peter Mika
    • 2
  1. 1.DEI, Politecnico di MilanoMilanItaly
  2. 2.Yahoo! ResearchBarcelonaSpain

Personalised recommendations