Ontology Alignment for Linked Open Data

  • Prateek Jain
  • Pascal Hitzler
  • Amit P. Sheth
  • Kunal Verma
  • Peter Z. Yeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)


The Web of Data currently coming into existence through the Linked Open Data (LOD) effort is a major milestone in realizing the Semantic Web vision. However, the development of applications based on LOD faces difficulties due to the fact that the different LOD datasets are rather loosely connected pieces of information. In particular, links between LOD datasets are almost exclusively on the level of instances, and schema-level information is being ignored. In this paper, we therefore present a system for finding schema-level links between LOD datasets in the sense of ontology alignment. Our system, called BLOOMS, is based on the idea of bootstrapping information already present on the LOD cloud. We also present a comprehensive evaluation which shows that BLOOMS outperforms state-of-the-art ontology alignment systems on LOD datasets. At the same time, BLOOMS is also competitive compared with these other systems on the Ontology Evaluation Alignment Initiative Benchmark datasets.


Link Open Data Reference Alignment Ontology Match Ontology Alignment Link Open Data Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. International Journal On Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  2. 2.
    Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P.: Linked Data is Merely More Data. In: Brickley, D., Chaudhri, V.K., Halpin, H., McGuinness, D. (eds.) Linked Data Meets Artificial Intelligence, pp. 82–86. AAAI Press, Menlo Park (2010)Google Scholar
  3. 3.
    Polleres, A., Hogan, A., Harth, A., Decker, S.: Can we ever catch up with the Web? Semantic Web—Interoperability, Usability, Applicability (to appear),
  4. 4.
    Hitzler, P., van Harmelen, F.: A reasonable Semantic Web. Semantic Web—Interoperability, Usability, Applicability (to appear),
  5. 5.
    Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Guéret, C., Wang, S., Schlobach, S.: The Web of Data is a complex system—first insight into its multi-scale network properties. In: Proceedings of the ECCS 2010 European Conference on Complex Systems, Lisbon, Portugal (September 2010)Google Scholar
  7. 7.
    Bizer, C., et al.: DBpedia—A crystallization point for the Web of Data. Journal of Web Semantics 7(3), 154–165 (2009)CrossRefGoogle Scholar
  8. 8.
    Ponzetto, S.P., Strube, M.: Deriving a large scale taxonomy from Wikipedia. In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1440–1445. AAAI Press, Menlo Park (2007)Google Scholar
  9. 9.
    Mascardi, V., Locoro, A., Rosso, P.: Automatic Ontology Matching via Upper Ontologies: A Systematic Evaluation. IEEE Trans. on Knowledge and Data Engr. 22(5), 609–623 (2010)CrossRefGoogle Scholar
  10. 10.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In: Williamson, C.L., et al. (eds.) Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12. ACM Press, New York (2007)Google Scholar
  11. 11.
    David, J., Euzenat, J., Scharffe, F., dos Santos, C.T.: The Alignment API 4.0 Semantic Web—Interoperability, Usability, Applicability (to appear),
  12. 12.
    Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic verification. Journal of Web Semantics 7(3), 235–251 (2009)CrossRefGoogle Scholar
  13. 13.
    Spiliopoulos, V., Valarakos, A.G., Vouros, G.A.: CSR: Discovering Subsumption Relations for the Alignment of Ontologies. In: Bechhofer, S., et al. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 418–431. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A dynamic multistrategy ontology alignment framework. IEEE Transactions on Knowledge and Data Engineering 21, 1218–1232 (2009)CrossRefGoogle Scholar
  15. 15.
    David, J., Guillet, F., Briand, H.: Matching directories and OWL ontologies with AROMA. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, CIKM 2006, pp. 830–831. ACM, New York (2006)Google Scholar
  16. 16.
    Hamdi, F., Safar, B., Niraula, N.B., Reynaud, C.: Taxomap in the OAEI 2009 Alignment Contest. In: Shvaiko, P., et al. (eds.) Proceedings of the 4th International Workshop on Ontology Matching (OM 2009) at the 8th International Semantic Web Conference (ISWC 2009) Chantilly, USA, October 25 (2009)Google Scholar
  17. 17.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and an implementation of semantic matching. In: Kalfoglou, Y., et al. (eds.) Semantic Interoperability and Integration. Number 04391 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany (2005)Google Scholar
  18. 18.
    Euzenat, J., Shvaiko, P.: Ontology matching (DE). Springer, Heidelberg (2007)zbMATHGoogle Scholar
  19. 19.
    Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. SIGMOD Rec 35(3), 34–41 (2006)CrossRefGoogle Scholar
  20. 20.
    Ponzetto, S.P., Navigli, R.: Large-scale taxonomy mapping for restructuring and integrating wikipedia. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, pp. 2083–2088 (2009)Google Scholar
  21. 21.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. In: Proceedings of the 27th International Conference on Very Large Data Bases, VLDB 2001, pp. 49–58. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  23. 23.
    Nikolov, A., Uren, V.S., Motta, E., Roeck, A.N.D.: Overcoming schema heterogeneity between linked semantic repositories to improve coreference resolution. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 332–346. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets – On the Design and Usage of voiD, the ’Vocabulary of Interlinked Datasets’. In: WWW 2009 Workshop on Linked Data on the Web (LDOW 2009), Madrid, Spain (2009)Google Scholar
  25. 25.
    Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Bergman, M.K., Giasson, F.: UMBEL ontology, volume 1, technical documentation,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Prateek Jain
    • 1
  • Pascal Hitzler
    • 1
  • Amit P. Sheth
    • 1
  • Kunal Verma
    • 2
  • Peter Z. Yeh
    • 2
  1. 1.Kno.e.sis CenterWright State UniversityDayton
  2. 2.Accenture Technology LabsSan Jose

Personalised recommendations