Toponym Resolution in Social Media

  • Neil Ireson
  • Fabio Ciravegna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)


Increasingly user-generated content is being utilised as a source of information, however each individual piece of content tends to contain low levels of information. In addition, such information tends to be informal and imperfect in nature; containing imprecise, subjective, ambiguous expressions. However the content does not have to be interpreted in isolation as it is linked, either explicitly or implicitly, to a network of interrelated content; it may be grouped or tagged with similar content, comments may be added by other users or it may be related to other content posted at the same time or by the same author or members of the author’s social network. This paper generally examines how ambiguous concepts within user-generated content can be assigned a specific/formal meaning by considering the expanding context of the information, i.e. other information contained within directly or indirectly related content, and specifically considers the issue of toponym resolution of locations.


Concept Disambiguation Social networks Information Extraction 


  1. 1.
    Whittaker, S., Bergman, O., Clough, P.: Easy on that trigger dad: a study of long term family photo retrieval. Personal Ubiquitous Comput 14(1), 31–43 (2010)CrossRefGoogle Scholar
  2. 2.
    Yeung, C.m.A., Gibbins, N., Shadbolt, N.: Tag meaning disambiguation through analysis of tripartite structure of folksonomies. In: Web Intelligence/IAT Workshops, pp. 3–6. IEEE, Los Alamitos (2007)Google Scholar
  3. 3.
    Specia, L., Motta, E.: Integrating folksonomies with the semantic web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Angeletou, S.: Semantic enrichment of folksonomy tagspaces. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 889–894. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)Google Scholar
  6. 6.
    Tesconi, M., Ronzano, F., Marchetti, A., Minutoli, S.: Semantify Automatically turn your tags into senses. In: Social Data on the Web (2008)Google Scholar
  7. 7.
    Garcia, A., Szomszor, M., Alani, H., Corcho, O.: Preliminary results in tag disambiguation using dbpedia. In: Knowledge Capture (K-Cap 2009) - First International Workshop on Collective Knowledge Capturing and Representation - CKCaR 2009 (September 2009)Google Scholar
  8. 8.
    Overell, S., Sigurbjörnsson, B., van Zwol, R.: Classifying tags using open content resources. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, WSDM 2009, pp. 64–73. ACM, New York (2009)Google Scholar
  9. 9.
    Yarowsky, D.: One sense per collocation. In: Proceedings of the workshop on Human Language Technology, Morristown, NJ, USA, Association for Computational Linguistics, HLT 1993, pp. 266–271 (1993)Google Scholar
  10. 10.
    Garbin, E., Mani, I.: Disambiguating toponyms in news. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT 2005, Morristown, NJ, USA, Association for Computational Linguistics, pp. 363–370 (2005)Google Scholar
  11. 11.
    Overell, S., Rüger, S.: Using co-occurrence models for placename disambiguation. International Journal of Geographical Information Science 22, 265–287 (2008)CrossRefGoogle Scholar
  12. 12.
    Ding, J., Gravano, L., Shivakumar, N.: Computing geographical scopes of web resources. In: Proceedings of the 26th International Conference on Very Large Data Bases, VLDB 2000, pp. 545–556. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  13. 13.
    Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2004, pp. 273–280. ACM, New York (2004)Google Scholar
  14. 14.
    Clough, P., Sanderson, M., Joho, H.: Extraction of semantic annotations from textual web pages. Deliverable D15 6201, EU Project: SPIRIT (2004)Google Scholar
  15. 15.
    Zong, W., Wu, D., Sun, A., Lim, E.P., Goh, D.H.L.: On assigning place names to geography related web pages. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital libraries, JCDL 2005, pp. 354–362. ACM, New York (2005)Google Scholar
  16. 16.
    Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s photos. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 761–770. ACM, New York (2009)Google Scholar
  17. 17.
    Davis, M., King, S., Good, N., Sarvas, R.: From context to content: leveraging context to infer media metadata. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, MULTIMEDIA 2004, pp. 188–195. ACM, New York (2004)CrossRefGoogle Scholar
  18. 18.
    Serdyukov, P., Murdock, V., van Zwol, R.: Placing flickr photos on a map. In: Proceedings of the 32nd international ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, pp. 484–491. ACM, New York (2009)Google Scholar
  19. 19.
    Rattenbury, T., Naaman, M.: Methods for extracting place semantics from flickr tags. ACM Trans. Web 3(1), 1–30 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, C., Wang, J., Xie, X., Ma, W.Y.: Mining geographic knowledge using location aware topic model. In: Proceedings of the 4th ACM Workshop on Geographical Information Retrieval, GIR 2007, pp. 65–70. ACM, New York (2007)Google Scholar
  21. 21.
    Weinberger, K.Q., Slaney, M., Van Zwol, R.: Resolving tag ambiguity. In: Proceeding of the 16th ACM International Conference on Multimedia, MM 2008, pp. 111–120. ACM, New York (2008)Google Scholar
  22. 22.
    Naaman, M., Paepcke, A., Garcia-Molina, H.: From where to what: Metadata sharing for digital photographs with geographic coordinates. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 196–217. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Sarin, S., Nagahashi, T., Miyosawa, T., Kameyama, W.: On the design and exploitation of user’s personal and public information for semantic personal digital photograph annotation. Adv. MultiMedia 2008(2), 1–16 (2008)CrossRefGoogle Scholar
  24. 24.
    Rae, A., Sigurbjrnsson, B., van Zwol, R.: Improving tag recommendation using social networks. In: RIAO 2010, Paris, France (2010)Google Scholar
  25. 25.
    Lu, Y., Tsaparas, P., Ntoulas, A., Polanyi, L.: Exploiting social context for review quality prediction. In: 19th International World Wide Web Conference, WWW 2010 (April 2010)Google Scholar
  26. 26.
    Ceccato, M., Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Ambiguity identification and measurement in natural language texts. Technical Report Technical Report DIT-04-111, Univeristy of Trento (December 2004)Google Scholar
  27. 27.
    Mich, L.: On the use of ambiguity measures in requirements analysis. In: Proceedings of the 6th International Workshop on Applications of Natural Language to Information Systems, NLDB 2001, pp. 143–152. GI (2001)Google Scholar
  28. 28.
    Overell, S.: Geographic Information Retrieval: Classification, Disambiguation and Modelling. PhD thesis, Imperial College London (2009)Google Scholar
  29. 29.
    chung Chang, C., Lin, C.J.: Libsvm: a library for support vector machines (2001) Software available at,
  30. 30.
    Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)CrossRefzbMATHGoogle Scholar
  31. 31.
    Jones, C.B., Purves, R.S., Clough, P.D., Joho, H.: Modelling vague places with knowledge from the web. Int. J. Geogr. Inf. Sci. 22(10), 1045–1065 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Neil Ireson
    • 1
  • Fabio Ciravegna
    • 1
  1. 1.University of SheffieldUK

Personalised recommendations