One Size Does Not Fit All: Customizing Ontology Alignment Using User Feedback

  • Songyun Duan
  • Achille Fokoue
  • Kavitha Srinivas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)

Abstract

A key problem in ontology alignment is that different ontological features (e.g., lexical, structural or semantic) vary widely in their importance for different ontology comparisons. In this paper, we present a set of principled techniques that exploit user feedback to customize the alignment process for a given pair of ontologies. Specifically, we propose an iterative supervised-learning approach to (i) determine the weights assigned to each alignment strategy and use these weights to combine them for matching ontology entities; and (ii) determine the degree to which the information from such matches should be propagated to their neighbors along different relationships for collective matching. We demonstrate the utility of these techniques with standard benchmark datasets and large, real-world ontologies, showing improvements in F-scores of up to 70% from the weighting mechanism and up to 40% from collective matching, compared to an unweighted linear combination of matching strategies without information propagation.

References

  1. 1.
    Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontology matching. In: IJCAI 2009 (2009)Google Scholar
  2. 2.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2007)MATHGoogle Scholar
  3. 3.
    Byrne, B., Fokoue, A., Kalyanpur, A., Srinivas, K., Wang, M.: Scalable matching of industry models - a case study. In: OM (2009)Google Scholar
  4. 4.
    Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine learning approach. In: Handbook on Ontologies in Information Systems. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Eckert, K., Meilicke, C., Stuckenschmidt, H.: Improving ontology matching using meta-level learning. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 158–172. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Ehrig, M., Staab, S.: QOM – quick ontology mapping. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with APFEL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 186–200. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Jean-Mary, Y.R., et al.: ASMOV: Results for OAEI 2009. In: OM (2009)Google Scholar
  9. 9.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  10. 10.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an implementation of semantic matching. In: ESWC (2004)Google Scholar
  11. 11.
    Hanif, M.S., Aono, M.: Anchor-Flood: Results for OAEI 2009. In: OM (2009)Google Scholar
  12. 12.
    Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A dynamic multistrategy ontology alignment framework. IEEE Trans. Knowl. Data Eng. (2009)Google Scholar
  13. 13.
    Melnik, S., Garcia-molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm. In: ICDE (2002)Google Scholar
  14. 14.
    Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. (2004)Google Scholar
  15. 15.
    Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference (1988)Google Scholar
  16. 16.
    Raghavan, V.V., Wong, S.K.M.: A critical analysis of vector space model for information retrieval. Journal of the American Society for Information Science (1999)Google Scholar
  17. 17.
    Wang, P., Xu, B.: Lily: Ontology alignment results for OAEI 2009. In: OM (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Songyun Duan
    • 1
  • Achille Fokoue
    • 1
  • Kavitha Srinivas
    • 1
  1. 1.IBM T.J. Watson Research CenterUSA

Personalised recommendations