Fusion – Visually Exploring and Eliciting Relationships in Linked Data

  • Samur Araujo
  • Geert-Jan Houben
  • Daniel Schwabe
  • Jan Hidders
Conference paper

DOI: 10.1007/978-3-642-17746-0_1

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)
Cite this paper as:
Araujo S., Houben GJ., Schwabe D., Hidders J. (2010) Fusion – Visually Exploring and Eliciting Relationships in Linked Data. In: Patel-Schneider P.F. et al. (eds) The Semantic Web – ISWC 2010. ISWC 2010. Lecture Notes in Computer Science, vol 6496. Springer, Berlin, Heidelberg

Abstract

Building applications over Linked Data often requires a mapping between the application model and the ontology underlying the source dataset in the Linked Data cloud. This mapping can be defined in many ways. For instance, by describing the application model as a view over the source dataset, by giving mappings in the form of dependencies between the two datasets, or by inference rules that infer the application model from the source dataset. Explicitly formulating these mappings demands a comprehensive understanding of the underlying schemas (RDF ontologies) of the source and target datasets. This task can be supported by integrating the process of schema exploration into the mapping process and help the application designer with finding the implicit relationships that she wants to map. This paper describes Fusion - a framework for closing the gap between the application model and the underlying ontologies in the Linked Data cloud. Fusion simplifies the definition of mappings by providing a visual user interface that integrates the exploratory process and the mapping process. Its architecture allows the creation of new applications through the extension of existing Linked Data with additional data.

Keywords

semantic web data interaction data management RDF mapping Linked Data 

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Samur Araujo
    • 1
  • Geert-Jan Houben
    • 1
  • Daniel Schwabe
    • 2
  • Jan Hidders
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.PUC-RioRio de JaneiroBrazil

Personalised recommendations