Advertisement

XES, XESame, and ProM 6

  • H. M. W. Verbeek
  • Joos C. A. M. Buijs
  • Boudewijn F. van Dongen
  • Wil M. P. van der Aalst
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 72)

Abstract

Process mining has emerged as a new way to analyze business processes based on event logs. These events logs need to be extracted from operational systems and can subsequently be used to discover or check the conformance of processes. ProM is a widely used tool for process mining. In earlier versions of ProM, MXML was used as an input format. In future releases of ProM, a new logging format will be used: the eXtensible Event Stream (XES) format. This format has several advantages over MXML. The paper presents two tools that use this format - XESame and ProM 6 - and highlights the main innovations and the role of XES. XESame enables domain experts to specify how the event log should be extracted from existing systems and converted to XES. ProM 6 is a completely new process mining framework based on XES and enabling innovative process mining functionality.

Keywords

Process Mining Domain Expert Semantic Extension ProM Framework Lifecycle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An Industrial Application. Information Systems 32(5), 713–732 (2007)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  4. 4.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Buijs, J.C.A.M.: Mapping Data Sources to XES in a Generic Way. Master’s thesis, Eindhoven University of Technology (2010)Google Scholar
  6. 6.
    Datta, A.: Automating the Discovery of As-Is Business Process Models: Probabilistic and Algorithmic Approaches. Information Systems Research 9(3), 275–301 (1998)CrossRefGoogle Scholar
  7. 7.
    van Dongen, B.F., van der Aalst, W.M.P.: A Meta Model for Process Mining Data. In: Casto, J., Teniente, E. (eds): Proceedings of the CAiSE 2005 Workshops (EMOI-INTEROP Workshop), vol. 2, pp. 309–320. FEUP, Porto, Portugal (2005)Google Scholar
  8. 8.
    van Dongen, B.F., Alves de Medeiros, A.K., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM Framework: A New Era in Process Mining Tool Support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Günther, C.W., van der Aalst, W.M.P.: A Generic Import Framework for Process Event Logs. In: Eder, J., Dustdar, S. (eds.) BPI 2006. LNCS, vol. 4103, pp. 81–92. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Günther, C.W.: Process Mining in Flexible Environments. PhD thesis, Eindhoven University of Technology, Eindhoven (2009)Google Scholar
  11. 11.
    Günther, C.W.: XES Standard Definition. Fluxicon Process Laboratories (November 2009)Google Scholar
  12. 12.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    IEEE Task Force on Process Mining, http://www.win.tue.nl/ieeetfpm
  14. 14.
    Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application of process mining in healthcare - a case study in a Dutch hospital. In: Fred, A., Filipe, J., Gamboa, H. (eds.) Biomedical Engineering Systems and Technologies. Communications in Computer and Information Science, vol. 25, pp. 425–438. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Alves de Medeiros, A.K., Pedrinaci, C., van der Aalst, W.M.P., Domingue, J., Song, M., Rozinat, A., Norton, B., Cabral, L.: An Outlook on Semantic Business Process Mining and Monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) SWWS 2007. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)CrossRefGoogle Scholar
  17. 17.
    Rozinat, A., de Jong, I.S.M., Günther, C.W., van der Aalst, W.M.P.: Process mining applied to the test process of wafer steppers in ASML. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews (2009) (to appear)Google Scholar
  18. 18.
    Song, M., van der Aalst, W.M.P.: Supporting Process Mining by Showing Events at a Glance. In: Chari, K., Kumar, A. (eds.) Proceedings of 17th Annual Workshop on Information Technologies and Systems (WITS 2007), Montreal, Canada, pp. 139–145 (December 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • H. M. W. Verbeek
    • 1
  • Joos C. A. M. Buijs
    • 1
  • Boudewijn F. van Dongen
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations