Advertisement

A Classification Scheme for Lymphocyte Segmentation in H&E Stained Histology Images

  • Manohar Kuse
  • Tanuj Sharma
  • Sudhir Gupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6388)

Abstract

A technique for automating the detection of lymphocytes in histopathological images is presented. The proposed system takes Hematoxylin and Eosin (H&E) stained digital color images as input to identify lymphocytes. The process involves segmentation of cells from extracellular matrix, feature extraction, classification and overlap resolution. Extracellular matrix segmentation is a two step process carried out on the HSV-equivalent of the image, using mean shift based clustering for color approximation followed by thresholding in the HSV space. Texture features extracted from the cells are used to train a SVM classifier that is used to classify lymphocytes and non-lymphocytes. A contour based overlap resolution technique is used to resolve overlapping lymphocytes.

Keywords

Lymphocytes Classification Contour Overlap Resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bikhet, S.F., Darwish, A.M., Tolba, H.A., Shaheen, S.I.: Segmentation and classification of white blood cells. In: IEEE International Conference on Acostics, Speech and Signal Processing, ICASSP, pp. 550–553 (1992)Google Scholar
  2. 2.
    Cheng, H.D., Shi, X.J., Min, R., Hu, L.M., Cai, X.P., Du., H.N.: Approaches for automated detection and classification of masses in mammograms. Pattern Recogn. 39(4), 646–668 (2006)CrossRefGoogle Scholar
  3. 3.
    Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sensing 28, 45–62 (2002)CrossRefGoogle Scholar
  4. 4.
    Comaniciu, D.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 58, 71–96 (2002)Google Scholar
  5. 5.
    Deschoolmeester, V., Baay, M., Van Marck, E., Weyler, J., Vermeulen, P., Lardon, F., Vermorken, J.: Tumor infiltrating lymphocytes: an intriguing player in the survival of colorectal cancer patients. BMC Immunology 11(1), 19 (2010)CrossRefGoogle Scholar
  6. 6.
    Doughri, R., M’hiri, S., Romdhane, K.B., Ghorbel, F., Essafi, S.: Segmentation and classification of breast cancer cells in hostological images. Information and Communication Technology (2006)Google Scholar
  7. 7.
    Fatakdawala, H., Basavanhally, A., Xu, J., Bhanot, G., Ganesan, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: Expectation maximization driven geodesic active contour with overlap resolution: Application to lymphocyte segmentation on breast cancer histopathology. In: International Conference on Bioinformatics and Bioengineering (2009)Google Scholar
  8. 8.
    Fukunaga, Keinosuke, Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory (IEEE) 21(1), 32–40 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
  10. 10.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., Thun, M.J.: Cancer statistics 2008. CA Cancer J. Clin. 58, 71–96 (2008)CrossRefGoogle Scholar
  11. 11.
    Joachims, T.: Making large-scale svm learning practical. advances in kernel methods - support vector learning. MIT-Press, Cambridge (1999)Google Scholar
  12. 12.
    Latson, L., Sebek, B., Powell, K.A.: Automated cell nuclear segmentation in colour images of he stained breast biopsy. Anal. Quant. Cytol. Histol. 25(321-331) (2003)Google Scholar
  13. 13.
    Losi, L., Ponti, G., Di Gregorio, C., Marino, M., Rossi, G., Pedroni, M., Benatti, P., Roncucci, L., de Leon, M.P.: Prognostic significance of histological features and biological parameters in stage i (pt1 and pt2) colorectal adenocarcinoma. Pathology - Research and Practice 202(9), 663–670 (2006)CrossRefGoogle Scholar
  14. 14.
    Ongun, G., Halici, U., Leblebiciogl, K., Atalay, V.: Feature extraction and classification of blood cells for an automated differential blood count system. IEEE IJCNN, 2461–2466 (2001)Google Scholar
  15. 15.
    Rasband, W.S.: Imagej. U.S. National Laboratory of Health, Bethesda (1997-2005)Google Scholar
  16. 16.
    Schnorrenberg, F., Pattichis, C., Kyriacou, K., Schizas, C.: Computer-aided detection of breast cancer nuclei. IEEE Transaction on Information Technology in Bio-medicine, 128–140 (1997)Google Scholar
  17. 17.
    Shanmugam, K., Haralick, R.M., Dinstein, I.: Textural features of image classification. IEEE Transactions on Systems, Man and Cybernetics SMC-3, 6 (1973)CrossRefGoogle Scholar
  18. 18.
    Soh, L., Tsatsoulis, C.: Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. IEEE Transactions on Geoscience and Remote Sensing 37, 2 (1999)CrossRefGoogle Scholar
  19. 19.
    Scarff, R.W., Torloni, H.: Histological typing of breast tumors. international classification of tumors. World Health Organization, 13–20 (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Manohar Kuse
    • 1
  • Tanuj Sharma
    • 1
  • Sudhir Gupta
    • 1
  1. 1.The LNM Institute of Information TechnologyJaipurIndia

Personalised recommendations