ISDM at ImageCLEF 2010 Fusion Task

  • A. Revuelta-Martínez
  • I. García-Varea
  • J. M. Puerta
  • L. Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6388)


Nowadays, one of the main problems in information retrieval is filtering the great amount of information currently available. Late fusion techniques merge the outcomes of different information retrieval systems to generate a single result that, hopefully, could increase the overall performance by taking advantage of the strengths of all the individual systems. These techniques have a great flexibility and allow an efficient development of multimedia retrieval systems. The growing interest on these technologies has led to the creation of a subtrack in the ImageCLEF entirely devoted to them: the information fusion task. In this work, Intelligent Systems and Data Mining group approach to that task is presented. We propose the use of an evolutive algorithm to estimate the parameters of three of all the fusion approaches present in the literature.


multimodal information retrieval late fusion estimation of distribution algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aslam, J.A., Montague, M.: Models for metasearch. In: 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 276–284. ACM, New York (2001)Google Scholar
  2. 2.
    Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice. Pearson, London (2010)Google Scholar
  3. 3.
    Deselaers, T., Weyand, T., Keysers, D., Macherey, W., Ney, H.: Fire in ImageCLEF 2005: Combining content-based image retrieval with textual information retrieval. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 652–661. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Efron, M.: Generative model-based metasearch for data fusion in information retrieval. In: 9th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 153–162. ACM, New York (2009)Google Scholar
  5. 5.
    Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation 3(1), 1–16 (1995)Google Scholar
  6. 6.
    Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: 2nd Text REtrieval Conference, pp. 243–252 (1994)Google Scholar
  7. 7.
    Larrañaga, P., Lozano, J.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  8. 8.
    Lee, J.H.: Analyses of multiple evidence combination. In: 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 267–276. ACM, New York (1997)Google Scholar
  9. 9.
    Lillis, D., Toolan, F., Mur, A., Peng, L., Collier, R., Dunnion, J.: Probability-based fusion of information retrieval result sets. Artificial Intelligence Review 25(1-2), 179–191 (2006)Google Scholar
  10. 10.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)Google Scholar
  11. 11.
    Mateo, J.L., de la Ossa, L.: LiO: an easy and flexible library of metaheuristics. Tech. Rep. DIAB-06-04-1, Departamento de Sistemas Informáticos de la Universidad de Castilla-La Mancha (2006),
  12. 12.
    Montague, M., Aslam, J.A.: Condorcet fusion for improved retrieval. In: 11th International Conference on Information and Knowledge Management, pp. 538–548. ACM, New York (2002)Google Scholar
  13. 13.
    Müller, H., Kalpathy-Cramer, J.: The ImageCLEF medical retrieval task at ICPR 2010 – information fusion to combine visual and textual information. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 101–110. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Müller, H., Kalpathy–Cramer, J., Eggel, I., Bedrick, S., Radhouani, S., Bakke, B., Kahn Jr., C.E., Hersh, W.: Overview of the CLEF 2009 medical image retrieval track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 72–84. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Paredes, R., Deselaers, T., Vidal, E.: A probabilistic model for user relevance feedback on image retrieval. In: Popescu-Belis, A., Stiefelhagen, R. (eds.) MLMI 2008. LNCS, vol. 5237, pp. 260–271. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Sebag, M., Ducoulombier, A.: Extending population-based incremental learning to continuous search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Revuelta-Martínez
    • 1
  • I. García-Varea
    • 1
  • J. M. Puerta
    • 1
  • L. Rodríguez
    • 1
  1. 1.Departamento de Sistemas InformáticosUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations