Advertisement

Modelling the Climate System: An Overview

  • Gabriele GramelsbergerEmail author
  • Johann Feichter
Chapter

Abstract

A Google search for the keyword ‘climate’ on a cold summer day in August 2010 delivered more than 150 million links in 0.23 s, and ‘climate change’ brought another 58 million. Obviously it is no problem to find floods of information about these topics on the net, yet understanding the scientific concept of climate and climate modelling is not so easy. The trouble with ‘climate’ starts when it is mixed up with the idea of weather, and when extreme weather events and short-term trends in temperature or precipitation are interpreted as effects of climate change. Usually, these interpretations are linked to an individual’s memory of experiences in childhood and other periods of life. But the trouble results not from this individual definition, which does not accord with the World Meteorological Organization’s official definition of climate as the statistics of weather. The trouble is raised by the scientific concept of climate as a mathematical construct that cannot be experienced directly. This problem is hitting science now that socio-political demands are coming into play. For responding to such demands, science has to break down its statistical and general concepts into individual and local conclusions, but this is—at the moment at least—not possible. The reason lies in the top-down approach of modern science, which uses globally valid equations to achieve increasingly higher resolution. The great challenge for meteorology during the next years and decades will be to translate statistical and general results into individual and local knowledge. Or in other words, science has to connect its global view with local circumstances. Regional modelling and downscaling are just the beginning, although these methods are still far removed from any particular individual or local view of a particular city or area. Of course, one can ask why humans do not simply get used to the scientific concept of climate. But when concrete environmental activities are required, individual needs and local effects play the main role, not the annual mean global temperature.

Keywords

Climate Sensitivity World Meteorological Organization Couple Model Intercomparison Project Gross National Product Community Climate System Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adve SV, Adve VS, Agha G et al (2008) Parallel@Illinois. Parallel Computing Research at Illinois. The UPCRC Agenda. University of Illinois at Urbana-Champaign. http://www.upcrc.illinois.edu/documents/UPCRC_Whitepaper.pdf
  2. Allen CD (2007) Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems 10: 797797–8808Google Scholar
  3. Allen MR, Frame DJ, Huntingford C et al (2009a) Warming caused by cumulative carbon emission: the trillionth tone. Nature 458: 1163–1166Google Scholar
  4. Allen MR, Frame DJ, Frieler K et al (2009b) The exit strategy: Emission targets must be placed in the context of a cumulative carbon budget if we are to avoid dangerous climate change. Nature Reports Climate Change. doi: 10.1038/climate.2009.38Google Scholar
  5. Anderson JG, Dykema JA, Goody RM, et al (2004) Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space. J Quant Spectrosc Ra 85: 367–383Google Scholar
  6. Arakawa, A (2000) A Personal Perspektive on the early Years of General Circulation Modeling at UCLA. In: Randall DA (ed) General Circulation Model Development. Academic Press, San Diego: 1–65Google Scholar
  7. Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science 41: 237–276Google Scholar
  8. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19: 3518–3543Google Scholar
  9. Berger A (1988) Milankovitch Theory and climate. Rev Geophys 26: 624–657Google Scholar
  10. Bergeron T (1941) A New Era in Teaching Synoptic Meteorology. Georg Ann A 23: 251–275Google Scholar
  11. Bischof W (1960) Periodical variations of the atmospheric CO2 content in Scandinavia. Tellus 12: 216–226Google Scholar
  12. Bjerknes V (1904) Das Problem der Wettervorhersage, betrachtet von Standpunkt der Mechanik und Physik. Meteorol Z 21: 1–7Google Scholar
  13. Bjerknes V (1910) Dynamic Meteorology and Hydrography, vol 1. Carnegie Institution of Washington, Washington D.CGoogle Scholar
  14. Bjerknes V (1911) Dynamic Meteorology and Hydrography, vol 2. Carnegie Institution of Washington, Washington D.CGoogle Scholar
  15. Bjerknes V (1913) Die Meteorologie als exakte Wissenschaft. Vieweg, BraunschweigGoogle Scholar
  16. Bjerknes V (1919) The Structure of the Atmosphere When Rain is Falling. Q J Roy Meteor Soc 46: 119–140Google Scholar
  17. Bjerknes V (1938) Leipzig-Bergen. Festvortrag zur 25-Jahrfeier des geophysikalischen Instituts der Universität Leipzig. Z Geophysik 14: 49–62Google Scholar
  18. Bjerknes V (2009) The problem of weather prediction, considered from the viewpoints of mechanics and physics (English translation of Bjerknes 1904). Meteorol Z 18: 663–667Google Scholar
  19. Blinova EN, Kibel IA (1957) Hydrodynamical Methods of the Short- and Long-Range Weather Forecasting in the USSR. Tellus 9: 447–463Google Scholar
  20. Bongaarts J, Bulatao RA (2000) Beyond Six Billion: Forecasting the World’s Population. National Academy Press, Washington D.CGoogle Scholar
  21. Bolin B, Eriksson E (1959) Changes in the Carbon Dioxide Content of the Atmosphere and Sea Due to Fossil Fuel Combustion. In: Bolin B (ed) The Atmosphere and the Sea in Motion. Rockefeller Institute Press, New York: 130–142Google Scholar
  22. Bourke WW (1974) A multi-level spectral model 1: Formulation and hemispheric integrations. Mon Weather Rev 102: 687–701Google Scholar
  23. Bray D, von Storch H (2009) ‘Prediction’ or ‘Projection’? The nomenclature of climate science. Sci Commun 30: 534–543Google Scholar
  24. Burks AW (1980) From ENIAC to the stored-program computers. In: Metropolis N, Howlett J, Rota GC (ed) A History of Computing in the Twentieth Century, Academic Press, New York: 311–344Google Scholar
  25. Bush V (1936) Instrumental Analysis. B Am Math Soc 42: 649–669Google Scholar
  26. Bushby FH, Hinds MK (1954) The computation of forecast charts by application of the Sawyer-Bushby two-parameter model. Q J Roy Meteor Soc 80: 165–173Google Scholar
  27. Callendar GS (1938) The artificial production of carbon dioxide and its influence on temperature. Q J Roy Meteor Soc 64: 223–240Google Scholar
  28. Callendar GS (1958) On the amount of carbon dioxide in the atmosphere. Tellus 10: 243–248Google Scholar
  29. Ceruzzi PE (1998) A History of Modern Computing. MIT Press, Cambridge MAGoogle Scholar
  30. Charney JG (1948) On the Scale of Atmospheric Motion. Geofysiske Publikasjoner 17: 1–17Google Scholar
  31. Charney JG (1975) Dynamics of Deserts and Drought in the Sahel. Q J Roy Meteor Soc 101: 193–202Google Scholar
  32. Charney JG, Arakaw A, Baker DJ et al (1979) Carbon Dioxide and Climate: a Scientific Assessment. National Academy of Sciences Press, Washington D.CGoogle Scholar
  33. Charney JG, Fjørtof, J, von Neumann J (1950) Numerical Integration of the Barotropic Vorticity Equation. Tellus 2: 237–254Google Scholar
  34. Clarke L, Edmonds J, Krey Vet al (2009) International climate policy architectures: Overview of the EMF 22 International Scenarios. Energ Econ 31: S64–S81Google Scholar
  35. Claussen M, Crucifix M, Fichefet T et al (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dynam 18: 579–586Google Scholar
  36. C4E4 Cyberinfrastructure for End-to-End Environmental Exploration (2010) Gridsphere. https://c4e4.rcac.purdue.edu:8453/gridsphere/gridsphereGoogle Scholar
  37. Dady G (1955) Deux aspects des prévision numérique à l’aide du modèl barotropique. La Météorologie 37: 63–76Google Scholar
  38. Dady G (1957) Le calcul automatique en meteorology. La Météorologie 48: 493–501Google Scholar
  39. DEISA Distributed European Infrastructure for Supercomputing Applications (2009) Homepage. http://www.deisa.eu
  40. DEISA Distributed European Infrastructure for Supercomputing Applications (2010) Homepage. URL: http://www.deisa.eu
  41. Dieckmann A (1931) Fitz Roy. Ein Beitrag zur Geschichte der Polarfronttheorie. Die Naturwissenschaften 19: 748–752Google Scholar
  42. Douglas M, Wildavsky AB (1982) Risk and Culture: An essay on the selection of technical and environmental dangers. University of California Press, BerkeleyGoogle Scholar
  43. Dove HW (1837) Meteorologische Untersuchungen. Sander, BerlinGoogle Scholar
  44. Drake JB, Jones PW, Carr GR (2005) Overview of the Software Design of the Community Climate System Model. Int J High Perform C 19: 177–186Google Scholar
  45. Drake JB, Jones PW, Vertenstein M et al (2008) Software design for petascale climate science. In: Bader D (ed) Petascale Computing: Algorithms and Applications. CRC Press, Boca Raton FLGoogle Scholar
  46. ECF European Climate Forum, PIK Potsdam Institute for Climate Impact Research (2004) What is dangerous climate change? Initial results of a symposium on key vulnerable regions, climate change and Article 2 of the UNFCCC. COP-10, Buenos Aires. http://www.european-climate-forum.net/pdf/ECF_beijing_results.pdf
  47. Eckert M (2006) The Dawn of Fluid Dynamics. A Discipline between Science and Technology. Wiley-Vch, WeinheimGoogle Scholar
  48. ECMWF European Centre for Medium-Range Weather Forecasts (2004) Newsletter No. 101. http://www.ecmwf.int/publications/newsletters/pdf/101.pdf
  49. Edwards PN (2000) A Brief History of Atmospheric General Circulation Modeling. In: Randall DA (ed) General Circulation Model Development. Academic Press, San Diego CA: 67–90Google Scholar
  50. Edwards PN (2010) A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. MIT Press, Cambridge MAGoogle Scholar
  51. ENES European Network for Earth System Modelling (2009) Homepage. http://www.enes.org/
  52. EPA Environmental Protection Agency (2010) Homepage. URL: http://www.epa.gov
  53. Fagre DB, Charles CW (2009) Thresholds of Climate Change in Ecosystems. Final Report, Synthesis and Assessment Product 4.2, U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington D.C. http://downloads.climatescience.gov/sap/sap4–2/sap4–2-final-report-all.pdf
  54. Ferrel W (1858) The influence of the Earth's rotation upon the relative motion of bodies near its surface. Astron. J. 109: 97–100Google Scholar
  55. Fitzroy R (1863) The weather book: a manual of practical meteorology. Longman & Green, LondonGoogle Scholar
  56. Fleming JR (1990) Meteorology in America, 1800–1870. Johns Hopkins University Press, BaltimoreGoogle Scholar
  57. Fleming JR (2002) History of Meteorology. In: Biagre BS (ed) A History of Modern Science and Mathematics, vol 3. Scribner’s, New York: 184–217Google Scholar
  58. Fleming JR (2009) The International Bibliography of Meteorology: Revisiting a nineteenth-century classic. History of Meteorology 5: 126–137Google Scholar
  59. Fowler LD, Randall DA, Rutledge S A (1996) Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J Climate 9: 489–529Google Scholar
  60. Fraassen van B (1980) The Scientific Image. Clarendon Press, OxfordGoogle Scholar
  61. Friedman RM (1989) Appropriating the Weather. Vilhelm Bjerknes and the Construction of a Modern Meteorology. Cornell University Press, Ithaca NYGoogle Scholar
  62. Galle JG (1846) Account of the discovery of the planet of Le Verrier at Berlin. Monthly Notices of the Royal Astronomical Society 7: 153Google Scholar
  63. Ganopolski AS, Rahmstorf S, Petoukhov V et al (1998) Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 371: 323–326Google Scholar
  64. Gates LW (1976) Modeling the Ice-Age Climate. Science 191: 1138–1144Google Scholar
  65. GEIA Global Emissions Inventory Activity (2010) Homepage. http://www.geiacenter.org/
  66. GENIE Grid Enabled Integrated Earth System Model (2010) Homepage. http://www.genie.ac.uk/
  67. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113 doi:10.1029/2007JD008972Google Scholar
  68. Girod B, Wiek A, Mieg H et al (2009) The evolution of the IPCC’s emission scenarios. Environ Sci Policy 12: 103–118Google Scholar
  69. Goldstine HH, von Neumann J (1946) On the Principles of Large Scale Computing Machines. In: von Neumann J (1963) Collected Works, vol. 5. Design of Computers, Theory of Automata and Numerical Analysis: 1–32Google Scholar
  70. Goldstine HH, von Neumann J (1947) Planning and Coding Problems for an Electronic Computing Instrument. In: von Neumann J (1963) Collected Works, vol. 5. Design of Computers. Theory of Automata and Numerical Analysis: 80–151Google Scholar
  71. Gramelsberger G (2009) Conceiving meteorology as the exact science of the atmosphere - Vilhelm Bjerknes revolutionary paper from 1904. Meteorol Z 18: 663–667Google Scholar
  72. Graßl H, Kokott J, Kulessa M et al (2003) Climate protection strategies for the 21st century: Kyoto and beyond. Report prepared by the German Advisory Council on Global Change, Berlin. http://www.wbgu.de/wbgu_sn2003_engl.pdf
  73. Grier DA (2005) When Computers were Human. Princeton University Press, PrincetonGoogle Scholar
  74. Groffman PM, Baron JS, Blett T et al (2006) Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems 9: 1–13Google Scholar
  75. Grover VI (ed.) (2008) Global Warming and Climate Change: Ten Years After Kyoto and Still Counting (2 volumes), Science Publishers, Enfield NHGoogle Scholar
  76. Gunn KLS, Marshall JS (1958) The distribution with size of aggregate snowflakes. J Meteorol15: 452–461Google Scholar
  77. Gupta AK (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr Sci India 87: 54–59Google Scholar
  78. Guston DH (2001) Boundary Organizations in Environmental Policy and Science: An Introduction. Sci Technol Hum Val 26: 399–408Google Scholar
  79. Hadley G (1735) The cause of the general Trade-Wind. Philos T Roy Soc Lond 29: 58–62Google Scholar
  80. Halfmann J, Schützenmeister Falk (eds) (2009) Organisationen der Forschung: der Fall der Klimatologie. VS Verlag für Sozialwissenschaften, WiesbadenGoogle Scholar
  81. Halley E (1686) An historical account of the Trade-Winds and Monsoons observable in the seas between and near the Tropick, with an attempt to assign the physical cause of said Winds. Philos T Roy Soc Lond 16: 153–168Google Scholar
  82. Hare SR Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47: 103–145Google Scholar
  83. Harper KC (2008) Weather by the Numbers. The Genesis of Modern Meteorology. MIT Press, Cambridge MAGoogle Scholar
  84. Helmholtz von H (1858) Über Integrale der hydrodynamischen Gleichungen, welche der Wirbelbewegung entsprechen. Crelle Journal fuer reine und angewandte Mathematik 55: 25–55Google Scholar
  85. Henderson-Sellars A, McGuffie K (1987) A Climate Modelling Primer. John Wiley & Sons, ChichesterGoogle Scholar
  86. Herrick H, Backus J (1954): IMB 701 Speedcoding and other Automatic Programming Systems. In: Proceedings of the Symposium on Automatic Programming Digital Computer. Office of Naval Research, Washington D.C.: 111–112Google Scholar
  87. Hinkelmann K, Essenwanger O, Reymann G et al (1952) Physikalisch-mathematische Grundlagen der numerischen Integration in einer baroclinen Atmosphäre. Berichte des Deutsch. Watt. 38: 416Google Scholar
  88. Hof AF, den Elzen M, van Vuuren GJ et al (2008) Analysing the costs and benefits of climate policy: Value judgements and scientific uncertainties. Global Environ Chang 18: 412–424Google Scholar
  89. Höhne N, Harnisch J (2002) Evaluating indicators for the relative responsibility for climate change - alternatives to the Brazilian proposal and global warming potentials. Third International Symposium on Non-CO2 Greenhouse Gases (NCGG-3) Maastricht, Netherlands, 21–23 January 2002 http://unfccc.int/resource/brazil/results/ecofys/hoheif_24Jan.pdf
  90. Hooke R (1667) A Method for Making a History of the Weather. In: Sprat T (ed) The History of the Roayl Society Of London. For the Improving of Natural Knowledge. London 1667: 173–179 (reprint 1959 Washington University Studies, St. Louis MO)Google Scholar
  91. Hulme M (2009) Why We Disagree About Climate Change. Understanding Controversy, Inaction and Opportunity. Cambridge University Press, CambridgeGoogle Scholar
  92. IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  93. IPCC (2005) Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  94. IPCC (2007a) Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  95. IPCC (2007b) Climate Change 2007: The Scientific Basis. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  96. IPCC (2010) Expert Meeting on Assessing and Combining Multi Model Climate Projections. National Center for Atmospheric Research, Boulder COGoogle Scholar
  97. Jasanoff S, Martello ML (2004) Earthly Politics: Local and Global in Environmental Governance. MIT Press, Cambridge MAGoogle Scholar
  98. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77: 437–470Google Scholar
  99. Kandlikar M, Risbey J, Dessai S (2005) Representing and communicating deep uncertainty in climate change assessments. Cr Geosci 337: 443–455Google Scholar
  100. Karo IL (1995) The days of Guriy Ivanovich Marchuk’s youth. Atmos Ocean Phys 3: 290–202Google Scholar
  101. Kasahara A, Washington WM (1967) NCAR global general circulation model of the atmosphere. Mon Weather Rev 95: 389–402Google Scholar
  102. Keeling CD (1978) The Influence of Mauna Loa Observatory on the Development of Atmospheric CO2 Research. In: Mille J (ed) Mauna Loa Observatory: A 20th Anniversary Report. NOAA Environmental Research Laboratories, Boulder CO: 36–54Google Scholar
  103. Kiehl JT, Trenberth KE (1997) Earth's Annual Global Mean Energy Budget. B AM Meteor Soc 78: 197–208Google Scholar
  104. de Laplace PS (1951) A Philosophical Essay on Probabilities. (Théorie analytique des probabiliés, Paris 1820) Dover Publications, New YorkGoogle Scholar
  105. Leggett J, Pepper WJ, Swart RJ et al (1992) Emissions Scenarios for the IPCC: an Update. In Houghton JT, Callander BA, Varney SK (eds) Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, Cambridge: 68–95Google Scholar
  106. Leith CE (1964) Numerical simulation of the earth's atmosphere. Rep. W-7405-eng-48, Lawrence Radiation Laboratories, University of California, Livermore CAGoogle Scholar
  107. Levkov L, Rockel B, Kapitza H et al (1992) 3d mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr Phys Atmos 65: 35–58Google Scholar
  108. Lewis JM (2000) Clarifying the Dynamics of the General Circulation: Phillip’s Experiment. In: Randall DA (ed) General Circulation Model Development. Academic Press, San Diego CAL: 91–164Google Scholar
  109. Lin YL, Farley RD, Orville HD (1983) Bulk parametrization of the snow field in a cloud model. J Clim Appl Meteorol 22: 1065–1092Google Scholar
  110. Lohmann U, Quaas J, Kinne S et al (2007a) Different approaches for constraining global climate models of the anthropogenic indirect aerosol effect. B Am Meteorol Soc 88: 243–249Google Scholar
  111. Lohmann U, Stier P, Hoose C et al (2007b) Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos Chem Phys 7: 3425–3446Google Scholar
  112. Lucht W, Pachauri RK (2004) The mental component of the Earth system. In: Schellnhuber HJ, Crutzen PJ, Clark WC et al (eds) Earth System Analysis for Sustainability. MIT Press, Cambridge MA: 341–365Google Scholar
  113. Lynch P (2008) The ENIAC forecasts. A re-creation. B Am Meteorol Soc 89: 45–55Google Scholar
  114. Manabe S, Smagorinsky J, Strickler RF (1965) Simulated climatology of a general circulation model with a hydrological cycle. in: Mon Weather Rev 93: 769–798Google Scholar
  115. Manabe S, Bryan, K (1969) Climate calculations with a combined ocean-atmosphere model. J Atmos Sci 26: 786–789Google Scholar
  116. Manabe S, Wetherald R (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32: 3–15Google Scholar
  117. Manning M, Petit M, Easterling D et al (2004) IPCC Workshop on Describing Scientific Uncertainties in Climate Change to Support Analysis of Risk and of Options. National University of Ireland, Maynooth. http://www.ipcc.ch/pdf/supporting-material/ipcc-workshop-2004-may.pdf
  118. Mearns LO (1997) On the Use of Statistics to Evaluate Climate Model Experiments. Climatic Change 37(3), 443–448Google Scholar
  119. Meehl GA, Covey C, Delworth T et al (2007) The WCRP CMIP3 Multimodel Dataset. A New Era in Climate Change Research. B Am Meteorol Soc 88: 1383–1394Google Scholar
  120. Meinshausen M, Meinshausen N, Hare W, et al (2009) Greenhouse gas emission targets for limiting global warming to 2°C. Nature 458: 1158–1162Google Scholar
  121. Messinger F, Arakawa A (1976) Numerical methods used in atmospheric models. Global Atmospheric Research Program World Meteorological Organization Publication Series, GenevaGoogle Scholar
  122. Metcalf M, Reid J, Cohen M (2004) Fortran 95/2003 explained. Oxford University Press, OxfordGoogle Scholar
  123. Moss R, Schneider S (2000) Uncertainties in the IPCC TAR: Recommendations to Lead Authors for More Consistent Assessment and Reporting. In: Pachauri R, Taniguchi Tanaka K (eds) Guidance Papers on the Cross Cutting Issues of the Third Assessment Report of the IPCC. Intergovernmental Panel on Climate Change, Geneva: 33–51Google Scholar
  124. Munk MM (1929) Fundamentals of Fluid Dynamics for Aircraft Designers. The Ronald Press Company, New YorkGoogle Scholar
  125. Nakicenovic N, Swart R (2000) Special Report on Emissions Scenarios. Cambridge University Press, CambridgeGoogle Scholar
  126. NCDC National Climatic Data Center (2010) Homepage. http://www.ncdc.noaa.gov/oa/ncdc.html
  127. Nebeker F (1995) Calculating the Weather. Meteorology in the 20th Century. Academic Press, San Diego CALGoogle Scholar
  128. Neumann von J (1945) Entwicklung und Ausnutzung neuerer mathematischer Maschinen. In: von Neumann J (1963) Collected Works, vol 5. Design of Computers, Theory of Automata and Numerical Analysis. Pergamon Press, Oxford: 248–268Google Scholar
  129. Neumann von J, Richtmyer RD (1947) On the Numerical Soulution of Partial Differential Equations of Parabolic Type. In: von Neumann J (1963) Collected Works, vol 5. Design of Computers, Theory of Automata and Numerical Analysis. Pergamon Press, Oxford: 652–663Google Scholar
  130. Nordhaus WD (2007) A review of the Stern Review on the economics of climate change. J Econ Lit 45: 686–702Google Scholar
  131. Odroyd DR, Grapes RH (2008) Contributions to the history of geomorphology and Quaternary geology: an introduction. Geological Society, London, Special Publications 301. doi: 10.1144/SP301.1Google Scholar
  132. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science 263: 641–646Google Scholar
  133. Pepper WJ, Leggett RJ, Swart RJ et al (1992) Emission Scenarios for the IPCC An Update, Assumptions, Methodology, and Results. US Environmental Protection Agency, Washington D.C.Google Scholar
  134. Persson AO (2005a) Early operational Numerical Weather Prediction outside the USA: an historical Introduction. Part 1: Internationalism and engineering NWP in Sweden, 1952–69. Meteorol Appl 12: 135–159Google Scholar
  135. Persson AO (2005b) Early operational Numerical Weather Prediction outside the USA: an historical introduction: Part II: Twenty countries around the world. Meteorol Appl 12: 269–289Google Scholar
  136. Persson AO (2006) Hadley’s Principle: Understanding and Misunderstanding the Trade Winds. History of Meteorology 3: 17–39Google Scholar
  137. Petersen AC (2006) Simulating Nature: A Philosophical Study of Computer-Simulation Uncertainties and Their Role in Climate Science and Policy Advice. Het Spinhuis Publishers, Apeldoorn, AntwerpenGoogle Scholar
  138. Phillips N (1956) The general circulation of the atmosphere: A numerical experiment. Q J Roy Meteor Soc 82: 132–164Google Scholar
  139. PITAC President’s Information Technology Advisory Committee (1999) Information Technology Research: Investing in Our Future, Report, 24.02.1999. President’s Information Technology Advisory Committee, Arlington VA. http://www.nitrd.gov/pitac/report/index.html
  140. Popper K (1992) The Logic of Scientific Discovery. Routledge, London, New YorkGoogle Scholar
  141. Porter TM (1995) Trust in Numbers. The Pursuit of Objectivity in Science and Public Life, Princeton University Press, Princeton NJGoogle Scholar
  142. Potter BE (1991) Improvements to a commonly used cloud microphysical bulk parametriazion. J Appl Meteorol 30:1040–1042Google Scholar
  143. ProClim (2010) Research Information System. http://4dweb.proclim.ch/4dcgi/proclim/de/index.html
  144. Rahmstorf S (2008) Anthropogenic Climate Change: Revisiting the Facts. In: Zedillo E (ed) Global Warming: Looking Beyond Kyoto. Brookings Institution Press, Washington D.C.: 34–53Google Scholar
  145. Räisänen J, Ruokolainen L, Ylhäisi J (2010) Weighting of model results for improving best estimates of climate change. Clim Dynam 35: 407–422Google Scholar
  146. Randall DA, Khairoutdinov M, Arakawa A et al (2003) Breaking the cloud parameterization deadlock. B Am Meteorol Soc 84: 1547–1564Google Scholar
  147. Randall DA (2000) General Circulation Model Development. Academic Press, San Diego CALGoogle Scholar
  148. Randalls S (2010) History of the 2°C climate target. WIREs Climate Change 1: 598–605Google Scholar
  149. RCP Representative Concentration Pathways (2010) Database. URL: http://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=about
  150. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? B Am Meteorol Soc 89: 303–311Google Scholar
  151. Reid EG (1925) Standardization Tests of NACA No. 1 Wind Tunnel, NACA-Report No. 195. US National Advisory Committee for Aeronautics http://naca.central.cranfield.ac.uk/reports/1925/naca-report-195.pdf
  152. Revelle R, Suess HE (1957) Carbon Dioxide Exchange between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2 During the Past Decades. Tellus 9: 18–27Google Scholar
  153. Richardson FL (1922) Weather Prediction by Numerical Process Cambridge University Press, CambridgeGoogle Scholar
  154. Rodhe H, Charlson R, Crawford E (1997) Svante Arrhenius and the Greenhouse Effect. Ambio 26: 2–5Google Scholar
  155. Rossby CG (1941) The scientific basis of modern meteorology. In: Climate and Man, 1941 Yearbook of Agriculture. United States Department of Agriculture, Washington, D.C.: 656–661Google Scholar
  156. Saltzman B (1985) Paleoclimatic modeling. In: Hecht AD (ed) Paleoclimate analysis and modeling. Wieley, New York: 341–396Google Scholar
  157. Saltzman B (1988) Modelling the slow climatic attractor. In: Schlesinger M (ed) Physically-Based Modelling and Simulation of Climate and Climatic Change. Kluwer Academic Publishers, Dordrecht: 737–754Google Scholar
  158. Sanderson M (1999) The Classification of Climates from Pythagoras to Koeppen. in: B Am Meteorol Soc 80: 669–673Google Scholar
  159. Sawyer JS, Bushby FH (1953) A baroclinic model atmosphere suitable for numerical integration. J Meteor 10: 54–59Google Scholar
  160. Schellnhuber HJ, Cramer W, Nakicenovic N et al (2006) Avoiding Dangerous Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  161. Shapiro M, Shukla J, Brunet G et al (2010) An Earth-System Prediction Initiative for the 21st Century. B Am Meteorol Soc, in press. doi: 10.1175/2010BAMS2944.1Google Scholar
  162. Shukla J (2009) World Modelling Summit for Climate Prediction. World Climate Research Programme Report No. 131. http://www.wmo.int/pages/prog/wcrp/documents/WCRP_WorldModellingSummit_Jan2009.pdf
  163. Shukla J, Palmer TN, Hagedorn R et al. (2010) Towards a New Generation of World Climate Research and Computing Facilities. B Am Meteorol Soc e-view. doi: 10.1175/2010BAMS2900.1Google Scholar
  164. Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev 91: 99–164Google Scholar
  165. Stern N (2007) The economics of climate change, the Stern Review. Cambridge University Press, CambridgeGoogle Scholar
  166. Stokes GG (1845) On the theories of the internal friction of fluids in motion. In: Stokes GG (1980) Mathematical and Physical Papers, vol. 1. Cambridge Univ. Press, Cambridge: 75–115Google Scholar
  167. Stott LD, Cannariato KG, Thunell R et al (2004) Composite sediment cores, interpreted sea surface temperature, Western Tropical Pacific. Nature 431: 56–59Google Scholar
  168. Swart R, Bernstein L, Ha-Duong M et al. (2009) Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC. Climatic Change 92: 1–29Google Scholar
  169. TeraGrid (2010) Homepage. http://www.teragrid.org/
  170. Thrope A, Volkert H, Ziemianski MJ (2003) The Bjerknes’ Circulation Theorem. A Historical Perspective. B Am Meteorol Soc 84: 471–480Google Scholar
  171. Tol RSJ (2002) Welfare specifications and optimal control of climate change: an application of fund. Energ Econ 24: 367–376Google Scholar
  172. Ulam SM, von Neumann J (1980) The Interaction of Mathematics and Computing. In: Metropolis N, Howlett J, Rotta GC (eds) A History of Computing in the Twentieth Century. Academic Press, New York: 93–99Google Scholar
  173. UNFCCC (1992) The United Nations Framework Convention on Climate Change. United Nations, New York. http://unfccc.int/resource/docs/convkp/conveng.pdf
  174. Vogel B (2009) Bibliography of Recent Literature in the History of Meteorology. History of Meteorology 5: 23.125. http://www.meteohistory.org/2009historyofmeteorology5/3vogel.pdf
  175. Washington WM, Knutti R, Meehl GA et al (2009) How much climate change can be avoided by mitigation? Geophys Res Lett 36. doi:10.1029/2008GL037074Google Scholar
  176. WCRP World Climate Research Programme (2009) Homepage. URL: http://wcrp.wmo.int
  177. WCRP World Climate Research Programme (2010) Homepage. http://www.wcrp-climate.org/
  178. WDC World Data Center (2010) Homepage. URL: http://www.ngdc.noaa.gov/wdc/wdcmain.html
  179. Weart SR (2003) The discovery of global warming. Harvard University Press, Cambridge MAGoogle Scholar
  180. Wege K, Winkler P (2005) The Societas Meteorologica palatina (1780–1795) and the very First Beginnings of Hohenpeissenberg Observatory. In: Emeis S, Lüdecke C (ed) From Beaufort to Bjerknes and beyond: Critical perspectives on observing, analyzing, and predicting weather and climate. Rauner, Augsburg: 45–54Google Scholar
  181. Weigel AP, Knutti K, Liniger MA et al (2010) Risks of Model Weighting in Multimodel Climate Projections. J Climate 23: 4175–4191Google Scholar
  182. WGNE Working Group on Numerical Experimentation (2010) Meeting Reports. http://www.wmo.int/pages/prog/wcrp/PG_Reports_WGNE.html
  183. Wiin-Nielsen A (2001) Numerical Weather Prediction. The early development with emphasis on Europe. In: Spekat A (ed) 50th Anniversary of Numerical Weather Prediction (Commemorative Symposium. Potsdam, 9–10 March 2000). German Meteorological Society, BerlinGoogle Scholar
  184. WMO World Meteorological Organization (2010) Homepage. URL: http://www.wmo.int

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of PhilosophyFree University BerlinBerlinGermany
  2. 2.Max Planck Institute for Meteorology, The Atmosphere in the Earth SystemHamburgGermany

Personalised recommendations