Skip to main content

Optimal Trajectory Space Finding for Nonrigid Structure from Motion

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6474))

  • 1409 Accesses

Abstract

The deformation in nonrigid structure from motion can be modeled either in shape domain or in time domain. Here, we view the deformation in time domain, model the trajectory of each 3D point as a linear combination of trajectory bases, and present a novel method to automatically find the trajectory bases based on orthographic camera assumption. In this paper, a linear relation is explicitly derived between 2D projected trajectory and 3D trajectory bases. With this formulation, an approximation is formulated for finding 3D trajectory bases which cast the trajectory bases finding into a problem of finding eigenvectors. Using the approximated trajectory bases as a start point, an EM-like algorithm is proposed which refine the trajectory bases and the corresponding coefficients. The proposed method demonstrates satisfactory results on both the synthetic and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhter, I., Sheikh, Y.A., Khan, S., Kanade, T.: Nonrigid structure from motion in trajectory space. In: Neural Information Processing Systems 2008 (December 2008)

    Google Scholar 

  2. Brand, W.: Morphable 3d models from video. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, pp. II–456–II–463, vol. 2 (2001)

    Google Scholar 

  3. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3d shape from image streams, pp. 690–696 (2000)

    Google Scholar 

  4. Bue, A.D., Smeraldi, F., de Agapito, L.: Non-rigid structure from motion using ranklet-based tracking and non-linear optimization. Image Vision Comput. 25(3), 297–310 (2007)

    Article  Google Scholar 

  5. Kanatani, K., Sugaya, Y.: Factorization without factorization: a complete recipe. Mem. Fac. Eng. Okayama Univ. 38, 61–72 (2004)

    Google Scholar 

  6. Olsen, S.I., Bartoli, A.: Implicit non-rigid structure-from-motion with priors. Journal of Mathematical Imaging and Vision 31(2), 233–244 (2008)

    Article  MathSciNet  Google Scholar 

  7. Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. Pattern Anal. Mach. Intell. 19(3), 206–218 (1997)

    Article  Google Scholar 

  8. Rabaud, V., Belongie, S.: Re-thinking non-rigid structure from motion. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (23-28, 2008)

    Google Scholar 

  9. Rosin, P.L., Marshall, A.D. (eds.): PNon-rigid 3D factorization for projective reconstruction. British Machine Vision Association (2005)

    Google Scholar 

  10. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. International Journal of Computer Vision 9(2), 137–154 (1992)

    Article  Google Scholar 

  11. Torresani, L., Hertzmann, A., Bregler, C.: Learning non-rigid 3d shape from 2d motion. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004)

    Google Scholar 

  12. Torresani, L., Hertzmann, A., Bregler, C.: Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 878–892 (2008)

    Article  Google Scholar 

  13. Triggs, B.: Factorization methods for projective structure and motion. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1996, pp. 845–851 (18-20, 1996)

    Google Scholar 

  14. Vogler, C., Li, Z., Kanaujia, A., Goldenstein, S., Metaxas, D.: The best of both worlds: Combining 3d deformable models with active shape models. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–7 ( 14-21, 2007)

    Google Scholar 

  15. Wang, G., Wu, Q.M.J.: Stratification approach for 3-d euclidean reconstruction of nonrigid objects from uncalibrated image sequences. IEEE Transactions on Systems, Man, and Cybernetics, Part B 38(1), 90–101 (2008)

    Article  MathSciNet  Google Scholar 

  16. Xiao, J., Chai, J., Kanade, T.: A closed-form solution to non-rigid shape and motion recovery. International Journal of Computer Vision 67(2), 233–246 (2006)

    Article  MATH  Google Scholar 

  17. Xiao, J., Kanade, T.: Uncalibrated perspective reconstruction of deformable structures. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1075–1082 (17-21, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Su, Y., Liu, Y., Yang, Y. (2010). Optimal Trajectory Space Finding for Nonrigid Structure from Motion. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, vol 6474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17688-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17688-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17687-6

  • Online ISBN: 978-3-642-17688-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics