Advertisement

Anatomy-Based Registration of Isometrically Transformed Surfaces Using Geodesic Area Functionals

  • Boaz Vigdor
  • Joseph M. Francos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6474)

Abstract

A novel method for registration of isometrically transformed surfaces is introduced. The isometric transformation is locally decomposed into a sequence of low order transformations after manual analysis and partition of the template surface into its elementary parts. The proposed method employs geodesic moments, first, to find matching corresponding key points, and second, to generate matching regions for each of the object’s parts. The local transformation is estimated using second order moments of the corresponding regions. The method operation is demonstrated on the TOSCA dog object.

Keywords

Isometric transformation object registration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sethian, J.A.: Level set methods and fast marching methods, Cambridge (1999)Google Scholar
  2. 2.
    Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. Found. Comput. SIAM Journal of Computing (1987)Google Scholar
  3. 3.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S., Hoppe, H.: Fast Exact and Approximate Geodesics on Meshes. ACM Transactions on Graphics (2005)Google Scholar
  4. 4.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  5. 5.
    Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence (2003)Google Scholar
  6. 6.
    Memoli, F., Sapiro, G.: A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data. Found. Comput. Math., 313–347 (2005)Google Scholar
  7. 7.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  8. 8.
    De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
  10. 10.
    Shirman, L.A.: Construction of smooth curves and surfaces from polyhedral models. PhD dissertation, Berkeley University (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Boaz Vigdor
    • 1
  • Joseph M. Francos
    • 1
  1. 1.Computer and Electrical Engineering Dpt.Ben-Gurion UniversityIsrael

Personalised recommendations