Skip to main content

Self-stabilizing Byzantine Asynchronous Unison,

  • Conference paper
Principles of Distributed Systems (OPODIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6490))

Included in the following conference series:

Abstract

We explore asynchronous unison in the presence of systemic transient and permanent Byzantine faults in shared memory. We observe that the problem is not solvable under less than strongly fair scheduler or for system topologies with maximum node degree greater than two.

We present a self-stabilizing Byzantine-tolerant solution to asynchronous unison for chain and ring topologies. Our algorithm has minimum possible containment radius and optimal stabilization time.

A full version of this work is available in [1].

This work was funded in part by ANR projects SHAMAN, ALADDIN, and SPADES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubois, S., Potop-Butucaru, M.G., Nesterenko, M., Tixeuil, S.: Self-stabilizing byzantine asynchronous unison. CoRR abs/0912.0134 (2009)

    Google Scholar 

  2. Gouda, M.G., Herman, T.: Stabilizing unison. Inf. Process. Lett. 35(4), 171–175 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Couvreur, J.M., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract). In: ICDCS, pp. 486–493 (1992)

    Google Scholar 

  4. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

    Article  Google Scholar 

  5. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: A time-optimal self-stabilizing synchronizer using a phase clock. IEEE Trans. Dependable Sec. Comput. 4(3), 180–190 (2007)

    Article  Google Scholar 

  7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. ACM Commun. 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  8. Dolev, S.: Self-stabilization. MIT Press, Cambridge (March 2000)

    MATH  Google Scholar 

  9. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  10. Daliot, A., Dolev, D.: Self-stabilization of byzantine protocols. In: Herman, T., Tixeuil, S. (eds.) SSS 2005. LNCS, vol. 3764, pp. 48–67. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of byzantine faults. J. ACM 51(5), 780–799 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Symposium on Reliable Distributed Systems (SRDS 2002), p. 22. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

  13. Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Brief announcement: Dynamic FTSS in Asynchronous Systems: the Case of Unison. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 291–293. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: Chaudhuri, S., Kutten, S. (eds.) PODC, pp. 150–159. ACM, New York (2004)

    Google Scholar 

  15. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing byzantine tolerant digital clock synchronization. In: Bazzi, R.A., Patt-Shamir, B. (eds.) PODC, pp. 385–394. ACM, New York (2008)

    Google Scholar 

  16. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite byzantine attacks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 193–207. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing byzantine digital clock synchronization. In: [23], pp. 350–362

    Google Scholar 

  18. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with unbounded byzantine faults. International Journal of Principles and Applications of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

    Google Scholar 

  19. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol resilient to byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Dubois, S., Masuzawa, T., Tixeuil, S.: The impact of topology on byzantine containment in stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)

    Google Scholar 

  21. Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabilization. In: [23], pp. 440–453

    Google Scholar 

  22. Dubois, S., Masuzawa, T., Tixeuil, S.: On byzantine containment properties of the min+1 protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Datta, A.K., Gradinariu, M. (eds.): SSS 2006. LNCS, vol. 4280. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubois, S., Potop-Butucaru, M.G., Nesterenko, M., Tixeuil, S. (2010). Self-stabilizing Byzantine Asynchronous Unison, . In: Lu, C., Masuzawa, T., Mosbah, M. (eds) Principles of Distributed Systems. OPODIS 2010. Lecture Notes in Computer Science, vol 6490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17653-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17653-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17652-4

  • Online ISBN: 978-3-642-17653-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics